Glancing Angle Deposition of Thin Films : Engineering the Nanoscale.
Material type:
- text
- computer
- online resource
- 9781118847329
- 621.3815/2
- T174.7 -- .H39 2014eb
Intro -- Glancing Angle Deposition of Thin Films -- Contents -- Series Preface -- Preface -- 1 Introduction: Glancing Angle Deposition Technology -- 1.1 Nanoscale engineering and glancing angle deposition -- 1.2 GLAD-vantages -- 1.2.1 Nanoscale morphology control -- 1.2.2 Broad material compatibility -- 1.2.3 Novel thin-film material properties -- 1.2.4 Compatibility with standard microfabrication processes -- 1.2.5 Scalable fabrication method -- 1.3 The roots of glancing angle deposition: oblique deposition -- 1.4 The importance of experimental calibration -- 1.5 Computer simulations of glancing angle deposition growth -- 1.6 Major application areas in glancing angle deposition technology -- 1.6.1 Energy and catalysis -- 1.6.2 Sensing applications -- 1.6.3 Optics -- 1.7 Summary and outline of the book -- References -- 2 Engineering Film Microstructure with Glancing Angle Deposition -- 2.1 Introduction -- 2.2 Basics of conventional film growth -- 2.2.1 Physical vapour deposition -- 2.2.2 Nucleation and coalescence -- 2.2.3 Column microstructure -- 2.3 Glancing angle deposition technology: microstructural control via substrate motion -- 2.4 Engineering film morphology with α -- 2.4.1 Controlling microstructure and porosity -- 2.4.2 Directional column growth: column tilt β -- 2.5 Engineering film morphology: column steering via φ rotation -- 2.5.1 Controlling column architecture with φ: helical columns -- 2.5.2 Controlling microstructure with rotation speed: vertical columns -- 2.5.3 Continuous versus discrete substrate rotation -- 2.6 Growth characteristics of glancing angle deposition technology films -- 2.6.1 Evolutionary column growth -- 2.6.2 Column broadening -- 2.6.3 Column bifurcation -- 2.6.4 Anisotropic shadowing and column fanning -- 2.7 Advanced column steering algorithms -- 2.7.1 β variations in zigzag microstructures.
2.7.2 Spin-pause/two-phase substrate rotation: decoupling β and film density -- 2.7.3 Phisweep motion: competition-resilient structure growth -- 2.8 Additional control over film growth and structure -- 2.8.1 High-temperature glancing angle deposition growth -- 2.8.2 Multimaterial structures: co-deposition processes -- References -- 3 Creating High-Uniformity Nanostructure Arrays -- 3.1 Introduction -- 3.2 Seed layer design -- 3.2.1 Seed spacing and seed height -- 3.2.2 Seed lattice geometry -- 3.2.3 Seed size -- 3.2.4 Planar fill fraction -- 3.2.5 Seed shape -- 3.2.6 Two-dimensional shadow coverage -- 3.2.7 Seed material -- 3.2.8 Design parameter summary -- 3.3 Seed fabrication -- 3.3.1 Conventional techniques -- 3.3.2 Unconventional techniques -- 3.4 Advanced control of local shadowing environment -- 3.4.1 Preventing bifurcation: slow-corner motion -- 3.4.2 Preventing broadening: phisweep and substrate swing -- References -- 4 Properties and Characterization Methods -- 4.1 Introduction -- 4.2 Structural analysis with electron microscopy -- 4.2.1 Practical aspects -- 4.2.2 Scanning electron microscope image analysis -- 4.2.3 Three-dimensional column imaging: tomographic sectioning -- 4.2.4 Characterizing internal column structure with transmission electron microscope imaging -- 4.3 Structural properties of glancing angle deposition films -- 4.3.1 Film surface roughness and evolution -- 4.3.2 Column broadening -- 4.3.3 Intercolumn spacing and column density -- 4.4 Film density -- 4.4.1 Controlling density with : theoretical models -- 4.4.2 Experimental measurement and control of film density -- 4.5 Porosimetry and surface area determination -- 4.5.1 Surface area enhancement in glancing angle deposition films -- 4.5.2 The pore structure of glancing angle deposition films -- 4.6 Crystallographic texture and evolution -- 4.7 Electrical properties.
4.7.1 Resistivity in microstructured glancing angle deposition films -- 4.7.2 Anisotropic resistivity -- 4.7.3 Modelling glancing angle deposition film resistivity -- 4.7.4 Individual nanocolumn properties -- 4.8 Mechanical properties -- 4.8.1 α effects on film stress -- 4.8.2 Hardness properties -- 4.8.3 Elastic behaviour of glancing angle deposition films -- 4.8.4 Additional mechanical properties -- References -- 5 Glancing Angle Deposition Optical Films -- 5.1 Introduction -- 5.2 The Optics of Structured Glancing Angle Deposition Films -- 5.2.1 Optical anisotropy in columnar glancing angle deposition films -- 5.2.2 Modelling glancing angle deposition films with effective medium theory -- 5.2.3 The column and void material refractive indices -- 5.2.4 Modelling form birefringence via the depolarization factor -- 5.2.5 Dealing with microstructural uncertainty: bounds on the effective dielectric function -- 5.3 Calibrating Optical Properties of Glancing Angle Deposition Films -- 5.3.1 Basic measurements: isotropic approximations -- 5.3.2 Calibrating anisotropy with polarization-sensitive measurements -- 5.3.3 In-depth characterization with generalized techniques -- 5.3.4 Additional factors -- 5.4 Controlling Glancing Angle Deposition Film Optical Properties -- 5.4.1 Basic refractive index engineering with α -- 5.4.2 Controlling planar birefringence with α -- 5.4.3 Optimizing birefringence with serial bideposition -- 5.4.4 Modulating birefringence with complex φ motions -- 5.4.5 Controlling n with advanced glancing angle deposition motions -- 5.5 Graded-Index Coatings: Design and Fabrication -- 5.5.1 General design method for glancing angle deposition graded-index coatings -- 5.5.2 Designing φ motions for high-accuracy graded-index coatings -- 5.5.3 Specific examples -- 5.5.4 Antireflection coatings -- 5.5.5 Rugate interference filters.
5.5.6 Avoiding high-α growth instabilities in graded-index films -- 5.6 Designing Helical Structures for Circular Polarization Optics -- 5.6.1 Optics of chiral glancing angle deposition media -- 5.6.2 Engineering basic helical structures -- 5.6.3 Polygonal helical structures -- 5.6.4 Optimization of circular bragg phenomena with serial bideposition -- 5.6.5 Microcavity design in helical structures -- 5.6.6 Fabricating graded-birefringence thin-film designs -- 5.7 Practical Information and Issues -- 5.7.1 Post-deposition tuning -- 5.7.2 Environmental sensitivity -- 5.7.3 Optical scattering -- References -- 6 Post-Deposition Processing and Device Integration -- 6.1 Introduction -- 6.2 Post-deposition structural control -- 6.2.1 Annealing -- 6.2.2 Chemical composition control -- 6.2.3 Microstructural control via chemical etching -- 6.2.4 Ion-milling structural modification -- 6.2.5 Column surface modifications -- 6.3 Deposition onto nonplanar geometries -- 6.4 Photolithographic patterning of glancing angle deposition thin films -- 6.5 Encapsulation and replanarization of glancing angle deposition films -- 6.5.1 Encapsulation layer substrate motions -- 6.5.2 Film stress in encapsulation layers -- 6.6 Integrating electrical contacts with glancing angle deposition microstructures -- 6.6.1 Planar electrode configurations -- 6.6.2 Parallel-plate electrode configurations -- 6.7 Films in liquid environments -- 6.8 Using glancing angle deposition microstructures as replication templates -- 6.8.1 Single- and double-template fabrication processes -- 6.8.2 Nanotube fabrication via template fabrication -- References -- 7 Glancing Angle Deposition Systems and Hardware -- 7.1 Introduction -- 7.2 Vacuum Conditions -- 7.2.1 Vacuum requirements for glancing angle deposition systems -- 7.2.2 Physical vapour deposition process gases and higher pressure deposition.
7.3 Thickness calibration and deposition rate monitoring -- 7.3.1 Source directionality and tooling factor -- 7.3.2 Thickness calibration at nonzero a: deposition ratios -- 7.3.3 Extended source: effect on collimation -- 7.4 Uniformity Calculations for Glancing Angle Deposition Processes -- 7.4.1 Calculating geometry variation over a wafer -- 7.4.2 Mapping out thickness variation -- 7.4.3 Calculating parameter variations for moving substrates -- 7.4.4 Calculating thickness uniformity for moving substrates -- 7.4.5 Calculating column orientation uniformity -- 7.5 Substrate motion hardware -- 7.5.1 α motion accuracy and precision -- 7.5.2 φ motion requirements -- 7.5.3 Additional factors to consider -- 7.5.4 Substrate heating and cooling approaches -- 7.6 Scalability to manufacturing -- References -- A Selected Patents -- Index -- EULA.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.