ORPP logo
Image from Google Jackets

Guidelines for Determining the Probability of Ignition of a Released Flammable Mass.

Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2014Copyright date: ©2014Edition: 1st edDescription: 1 online resource (262 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118870341
Subject(s): Genre/Form: Additional physical formats: Print version:: Guidelines for Determining the Probability of Ignition of a Released Flammable MassLOC classification:
  • TH9446 .I47
Online resources:
Contents:
Cover -- Title Page -- Copyright Page -- CONTENTS -- LIST OF FIGURES -- LIST OF TABLES -- FOREWORD -- ACKNOWLEDGMENTS -- GLOSSARY -- 1 INTRODUCTION -- 1.1 Objectives -- 1.2 Motivation for this Book -- 1.2.1 A Brief History of Fire Protection -- 1.2.2 The Development of Risk-Based Approaches to Flammables Management -- 1.2.3 Difficulties in Developing Ignition Probability Prediction Methods -- 1.2.4 Missing Variables -- 1.2.5 Summary of Industry Needs and Path Forward -- 1.2.6 Applications for This Book -- 1.2.7 Limitations in Applying the Approaches in This Book -- 1.3 Ignition Probability Overview -- 1.3.1 Theoretical Basis for Ignition -- 1.3.2 Key Ignition Factors Related to the Properties of the Fuel and Available Surrogates That Can Be Used for Developing Probability of Ignition Predictions -- 1.3.3 Key Ignition Factors Related to the Release Source -- 1.3.4 Key Ignition Factors Related to the External Environment After the Release -- 1.4 Control of Ignition Sources -- 1.4.1 Ignition Source Management -- 1.4.2 Minimization of Release -- 1.5 Vapor Cloud Explosion Probability Overview -- 1.6 Detonation Overview -- 1.6.1 Detonation Using a Strong Ignition Source -- 1.6.2 Deflagration-to-Detonation Transition -- 1.6.3 Buncefield -- 1.7 Other Ignition Topics-Hydrogen -- 1.7.1 Ignition Mechanisms -- 1.7.2 Other Hydrogen Ignition Topics -- 2 ESTIMATION METHODS -- 2.1 Introduction -- 2.1.1 Event Tree -- 2.1.2 Failure Frequency Data for Use in Event Trees -- 2.1.3 Quantification of the Event Tree -- 2.2 Factors Influencing the Probability of Immediate Ignition -- 2.2.1 Temperature of Release Relative to the Autoignition Temperature -- 2.2.2 Minimum Ignition Energy (MIE) of Material Being Released -- 2.2.3 Pyrophoricity of Released Material -- 2.2.4 Pressure/Velocity of Discharge -- 2.2.5 Droplet Size -- 2.2.6 Presence of Particulates.
2.2.7 Configuration/Orientation of Equipment Near/At the Point of Release -- 2.2.8 Temperature of Release (As It Relates to Its Effect on MIE) -- 2.2.9 Phase of Release (API RBI) -- 2.2.10 Flash Point and Release Rate (TNO) -- 2.3 Factors Influencing the Probability of Delayed Ignition -- 2.3.1 Strength and Numbers of Ignition Sources -- 2.3.2 Duration of Exposure -- 2.3.3 Release Rate/Amount -- 2.3.4 Material Being Released -- 2.3.5 Release Phase/Flash Point/Boiling Point -- 2.3.6 Distance from Point of Release to Ignition Source -- 2.3.7 Meteorology -- 2.3.8 Events Originating Indoors -- 2.4 Factors Influencing the Probability of Explosion, Given Delayed Ignition -- 2.5 Potential Interdependence of Variables -- 2.6 Summary of Variables Used in Each Analysis Level -- 2.7 Basic (Level 1) Probability of Ignition Algorithms -- 2.7.1 Level 1 Algorithm for Probability of Immediate Ignition -- 2.7.2 Level 1 Algorithm for Probability of Delayed Ignition -- 2.8 Level 2 Probability of Ignition Algorithms -- 2.8.1 Level 2 Algorithm for Probability of Immediate Ignition -- 2.8.2 Level 2 Algorithm for Probability of Delayed Ignition -- 2.9 Advanced (Level 3) Probability of Ignition Algorithms -- 2.9.1 Level 3 Algorithm for Probability of Immediate Ignition -- 2.9.2 Level 3 Algorithm for Probability of Delayed Ignition -- 2.10 Developing Inputs When Chemical Properties Are Not Available -- 2.10.1 Estimating Input Properties of Chemicals Not in the Pick List -- 2.10.2 Estimating the Properties of Flammable Mixtures -- 2.11 Worked Example -- 2.11.1 Problem Statement -- 2.11.2 Level 1 Analysis -- 2.11.3 Level 2 Analysis -- 2.11.4 Level 3 Analysis -- 2.12 Application of the Models to a Study with Multiple Ignition Sources -- 3 TECHNICAL BACKGROUND AND DATA SOURCES -- 3.1 Introduction and Summary -- 3.2 Government-driven studies -- 3.2.1 Rew et al.
3.2.2 Bevi Risk Assessment Manual (TNO Purple Book) -- 3.2.3 HSE/Crossthwaite et al. -- 3.2.4 HSE/Thyer -- 3.2.5 HSE/Gummer and Hawksworth-Hydrogen -- 3.2.6 Cawley/U.S. Bureau of Mines -- 3.2.7 Canvey -- 3.2.8 Witcofski (NASA) Liquid Hydrogen -- 3.3 Information Developed by Industry Groups -- 3.3.1 Cox/Lees/Ang -- 3.3.2 E&amp -- P Forum -- 3.3.3 API RBI -- 3.3.4 API RP 2216 -- 3.3.5 IEEE -- 3.3.6 UK Energy Institute -- 3.4 Information Developed in Academia -- 3.4.1 Ronza et al. -- 3.4.2 Offshore Explosions (Loughborough) -- 3.4.3 Srekl and Golob -- 3.4.4 Duarteetal. -- 3.4.5 Swain-Ignition of Hydrogen -- 3.4.6 Dryer et al.-Hydrogen and Light Hydrocarbons -- 3.4.7 Britton-Silanes and Chlorosilanes -- 3.4.8 Pesce et al. -- 3.5 Information Developed by Individual Companies -- 3.5.1 Spouge -- 3.5.2 Moosemiller -- 3.5.3 Johnson-Humans as Electrostatic Ignition Sources -- 3.5.4 Jallais-Hydrogen -- 3.5.5 Zalosh-Hydrogen -- 3.5.6 Smith-Pipelines -- 3.6 Studies Specific to Ignition of Sprays -- 3.6.1 Lee et al. -- 3.6.2 Babrauskas -- 3.7 Case Histories -- 3.7.1 Britton-External Ignition Events -- 3.7.2 Pratt-Gas Well and Pipeline Blowouts -- 3.7.3 Gummer and Hawksworth-Hydrogen Events -- 4 ADDITIONAL EXAMPLES -- 4.1 Introduction to Examples and Potential "Lessons Learned -- 4.1.1 "Reality" vs. Predictions -- 4.1.2 "Conservatism"-Does It Exist? -- 4.1.3 Cases Where the Model May Not Be Appropriate or the Results Misinterpreted -- 4.1.4 Summary of Worked Examples -- 4.2 Worked Examples (Based on Other CCPS Books) -- 4.2.1 Vapor Cloud Explosion Hazard Assessment of a Storage Site -- 4.2.2 Open Field Release of Propane -- 4.2.3 Release from Pipeline -- 4.3 Worked Examples (Chemical and Petrochemical Plants) -- 4.3.1 Ethylene Tubing Failure -- 4.3.2 Benzene Pipe Rupture -- 4.3.3 Spill from Methyl Ethyl Ketone Tank -- 4.3.4 Indoor Puncture of MEK Tote.
4.3.5 Elevated Release -- 4.4 Worked Examples (oil refineries) -- 4.4.1 Gasoline Release from a Sight Glass -- 4.4.2 Overfilling a Gasoline Storage Tank -- 4.4.3 Overfilling a Propane Bullet -- 4.4.4 Hydrogen Release from a Sight Glass -- 4.5 Worked Examples (Unusual Cases) -- 4.5.1 Indoor Acid Spill-Ventilation Model -- 4.5.2 Release of Ammonia -- 4.6 Worked Examples ("Out of Scope" Cases) -- 4.6.1 Release of Gas from an Offshore Platform Separator -- 4.6.2 Dust Ignition -- 4.7 Worked Examples of the Benefits of Plant Modifications and Design Changes -- 4.7.1 Ignition by Hot Surfaces -- 4.7.2 Release Prevention -- 4.7.3 Duration of Exposure -- 4.7.4 Benefit of Improved Ventilation of Indoor Releases-Continuation of "Indoor Acid Spill" Example -- 5 SOFTWARE ILLUSTRATION -- 5.1 Explanation and Instructions for Software Tool -- 5.2 Opening the Software Tool -- 5.3 General Inputs and Outputs -- 5.4 Level 1 Inputs -- 5.5 Level 2 Analyses -- 5.6 Level 3 Analyses -- 5.7 Explosion Probability -- 5.8 Illustrations of Software Use -- 5.8.1 Vapor Cloud Explosion Hazard Assessment of a Storage Site (Example from Section 4.2.1) -- 5.8.2 Open Field Release of Propane (Example from Section 4.2.2) -- APPENDIX A. CHEMICAL PROPERTY DATA -- APPENDIX B. OTHER MODELS FOR CONSIDERATION -- REFERENCES -- INDEX -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright Page -- CONTENTS -- LIST OF FIGURES -- LIST OF TABLES -- FOREWORD -- ACKNOWLEDGMENTS -- GLOSSARY -- 1 INTRODUCTION -- 1.1 Objectives -- 1.2 Motivation for this Book -- 1.2.1 A Brief History of Fire Protection -- 1.2.2 The Development of Risk-Based Approaches to Flammables Management -- 1.2.3 Difficulties in Developing Ignition Probability Prediction Methods -- 1.2.4 Missing Variables -- 1.2.5 Summary of Industry Needs and Path Forward -- 1.2.6 Applications for This Book -- 1.2.7 Limitations in Applying the Approaches in This Book -- 1.3 Ignition Probability Overview -- 1.3.1 Theoretical Basis for Ignition -- 1.3.2 Key Ignition Factors Related to the Properties of the Fuel and Available Surrogates That Can Be Used for Developing Probability of Ignition Predictions -- 1.3.3 Key Ignition Factors Related to the Release Source -- 1.3.4 Key Ignition Factors Related to the External Environment After the Release -- 1.4 Control of Ignition Sources -- 1.4.1 Ignition Source Management -- 1.4.2 Minimization of Release -- 1.5 Vapor Cloud Explosion Probability Overview -- 1.6 Detonation Overview -- 1.6.1 Detonation Using a Strong Ignition Source -- 1.6.2 Deflagration-to-Detonation Transition -- 1.6.3 Buncefield -- 1.7 Other Ignition Topics-Hydrogen -- 1.7.1 Ignition Mechanisms -- 1.7.2 Other Hydrogen Ignition Topics -- 2 ESTIMATION METHODS -- 2.1 Introduction -- 2.1.1 Event Tree -- 2.1.2 Failure Frequency Data for Use in Event Trees -- 2.1.3 Quantification of the Event Tree -- 2.2 Factors Influencing the Probability of Immediate Ignition -- 2.2.1 Temperature of Release Relative to the Autoignition Temperature -- 2.2.2 Minimum Ignition Energy (MIE) of Material Being Released -- 2.2.3 Pyrophoricity of Released Material -- 2.2.4 Pressure/Velocity of Discharge -- 2.2.5 Droplet Size -- 2.2.6 Presence of Particulates.

2.2.7 Configuration/Orientation of Equipment Near/At the Point of Release -- 2.2.8 Temperature of Release (As It Relates to Its Effect on MIE) -- 2.2.9 Phase of Release (API RBI) -- 2.2.10 Flash Point and Release Rate (TNO) -- 2.3 Factors Influencing the Probability of Delayed Ignition -- 2.3.1 Strength and Numbers of Ignition Sources -- 2.3.2 Duration of Exposure -- 2.3.3 Release Rate/Amount -- 2.3.4 Material Being Released -- 2.3.5 Release Phase/Flash Point/Boiling Point -- 2.3.6 Distance from Point of Release to Ignition Source -- 2.3.7 Meteorology -- 2.3.8 Events Originating Indoors -- 2.4 Factors Influencing the Probability of Explosion, Given Delayed Ignition -- 2.5 Potential Interdependence of Variables -- 2.6 Summary of Variables Used in Each Analysis Level -- 2.7 Basic (Level 1) Probability of Ignition Algorithms -- 2.7.1 Level 1 Algorithm for Probability of Immediate Ignition -- 2.7.2 Level 1 Algorithm for Probability of Delayed Ignition -- 2.8 Level 2 Probability of Ignition Algorithms -- 2.8.1 Level 2 Algorithm for Probability of Immediate Ignition -- 2.8.2 Level 2 Algorithm for Probability of Delayed Ignition -- 2.9 Advanced (Level 3) Probability of Ignition Algorithms -- 2.9.1 Level 3 Algorithm for Probability of Immediate Ignition -- 2.9.2 Level 3 Algorithm for Probability of Delayed Ignition -- 2.10 Developing Inputs When Chemical Properties Are Not Available -- 2.10.1 Estimating Input Properties of Chemicals Not in the Pick List -- 2.10.2 Estimating the Properties of Flammable Mixtures -- 2.11 Worked Example -- 2.11.1 Problem Statement -- 2.11.2 Level 1 Analysis -- 2.11.3 Level 2 Analysis -- 2.11.4 Level 3 Analysis -- 2.12 Application of the Models to a Study with Multiple Ignition Sources -- 3 TECHNICAL BACKGROUND AND DATA SOURCES -- 3.1 Introduction and Summary -- 3.2 Government-driven studies -- 3.2.1 Rew et al.

3.2.2 Bevi Risk Assessment Manual (TNO Purple Book) -- 3.2.3 HSE/Crossthwaite et al. -- 3.2.4 HSE/Thyer -- 3.2.5 HSE/Gummer and Hawksworth-Hydrogen -- 3.2.6 Cawley/U.S. Bureau of Mines -- 3.2.7 Canvey -- 3.2.8 Witcofski (NASA) Liquid Hydrogen -- 3.3 Information Developed by Industry Groups -- 3.3.1 Cox/Lees/Ang -- 3.3.2 E&amp -- P Forum -- 3.3.3 API RBI -- 3.3.4 API RP 2216 -- 3.3.5 IEEE -- 3.3.6 UK Energy Institute -- 3.4 Information Developed in Academia -- 3.4.1 Ronza et al. -- 3.4.2 Offshore Explosions (Loughborough) -- 3.4.3 Srekl and Golob -- 3.4.4 Duarteetal. -- 3.4.5 Swain-Ignition of Hydrogen -- 3.4.6 Dryer et al.-Hydrogen and Light Hydrocarbons -- 3.4.7 Britton-Silanes and Chlorosilanes -- 3.4.8 Pesce et al. -- 3.5 Information Developed by Individual Companies -- 3.5.1 Spouge -- 3.5.2 Moosemiller -- 3.5.3 Johnson-Humans as Electrostatic Ignition Sources -- 3.5.4 Jallais-Hydrogen -- 3.5.5 Zalosh-Hydrogen -- 3.5.6 Smith-Pipelines -- 3.6 Studies Specific to Ignition of Sprays -- 3.6.1 Lee et al. -- 3.6.2 Babrauskas -- 3.7 Case Histories -- 3.7.1 Britton-External Ignition Events -- 3.7.2 Pratt-Gas Well and Pipeline Blowouts -- 3.7.3 Gummer and Hawksworth-Hydrogen Events -- 4 ADDITIONAL EXAMPLES -- 4.1 Introduction to Examples and Potential "Lessons Learned -- 4.1.1 "Reality" vs. Predictions -- 4.1.2 "Conservatism"-Does It Exist? -- 4.1.3 Cases Where the Model May Not Be Appropriate or the Results Misinterpreted -- 4.1.4 Summary of Worked Examples -- 4.2 Worked Examples (Based on Other CCPS Books) -- 4.2.1 Vapor Cloud Explosion Hazard Assessment of a Storage Site -- 4.2.2 Open Field Release of Propane -- 4.2.3 Release from Pipeline -- 4.3 Worked Examples (Chemical and Petrochemical Plants) -- 4.3.1 Ethylene Tubing Failure -- 4.3.2 Benzene Pipe Rupture -- 4.3.3 Spill from Methyl Ethyl Ketone Tank -- 4.3.4 Indoor Puncture of MEK Tote.

4.3.5 Elevated Release -- 4.4 Worked Examples (oil refineries) -- 4.4.1 Gasoline Release from a Sight Glass -- 4.4.2 Overfilling a Gasoline Storage Tank -- 4.4.3 Overfilling a Propane Bullet -- 4.4.4 Hydrogen Release from a Sight Glass -- 4.5 Worked Examples (Unusual Cases) -- 4.5.1 Indoor Acid Spill-Ventilation Model -- 4.5.2 Release of Ammonia -- 4.6 Worked Examples ("Out of Scope" Cases) -- 4.6.1 Release of Gas from an Offshore Platform Separator -- 4.6.2 Dust Ignition -- 4.7 Worked Examples of the Benefits of Plant Modifications and Design Changes -- 4.7.1 Ignition by Hot Surfaces -- 4.7.2 Release Prevention -- 4.7.3 Duration of Exposure -- 4.7.4 Benefit of Improved Ventilation of Indoor Releases-Continuation of "Indoor Acid Spill" Example -- 5 SOFTWARE ILLUSTRATION -- 5.1 Explanation and Instructions for Software Tool -- 5.2 Opening the Software Tool -- 5.3 General Inputs and Outputs -- 5.4 Level 1 Inputs -- 5.5 Level 2 Analyses -- 5.6 Level 3 Analyses -- 5.7 Explosion Probability -- 5.8 Illustrations of Software Use -- 5.8.1 Vapor Cloud Explosion Hazard Assessment of a Storage Site (Example from Section 4.2.1) -- 5.8.2 Open Field Release of Propane (Example from Section 4.2.2) -- APPENDIX A. CHEMICAL PROPERTY DATA -- APPENDIX B. OTHER MODELS FOR CONSIDERATION -- REFERENCES -- INDEX -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.