ORPP logo
Image from Google Jackets

Biosensors Nanotechnology.

By: Contributor(s): Material type: TextTextSeries: Advanced Material SeriesPublisher: Newark : John Wiley & Sons, Incorporated, 2014Copyright date: ©2014Edition: 1st edDescription: 1 online resource (552 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118773932
Subject(s): Genre/Form: Additional physical formats: Print version:: Biosensors NanotechnologyLOC classification:
  • T174.7 -- .B567 2014eb
Online resources:
Contents:
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1: New Materials and Methods -- 1 ZnO and Graphene Microelectrode Applications in Biosensing -- 1.1 Biosensors Based on Nanostructured Materials -- 1.2 Graphene Nanomaterials Used in Electrochemical Biosensor Fabrication -- 1.3 ZnO Nanostructures Used in the Fabrication of Electrochemical Biosensors -- 1.4 Miniaturized Graphene and ZnO Nanostructured Electrochemical Biosensors for Food and Clinical Applications -- 1.4.1 Amperometric Biosensors -- 1.4.2 Potentiometric Sensors -- 1.5 Conclusions and Future Prospects -- Acknowledgements -- References -- 2 Assembly of Polymers/Metal Nanoparticles and Their Applications as Medical Devices -- 2.1 Introduction -- 2.2 Platinum Nanoparticles -- 2.3 Gold Nanoparticles -- 2.4 Silver Nanoparticles -- 2.5 Assembly of Polymers/Silver Nanoparticles -- 2.6 Conclusion -- Acknowledgements -- References -- 3 Gold Nanoparticle-Based Electrochemical Biosensors for Medical Applications -- 3.1 Introduction -- 3.1.1 Electrochemical Biosensors -- 3.2 Gold Nanoparticles -- 3.2.1 Preparation of AuNPs -- 3.2.2 AuNP Modified Electrodes -- 3.2.3 AuNP-Based Electrochemical Biosensors for Medical Applications -- 3.3 Conclusion -- References -- 4 Impedimetric DNA Biosensors Based on Nanomaterials -- 4.1 Introduction -- 4.1.1 DNA Biosensors (Genosensors) -- 4.1.2 Electrochemical DNA Biosensors -- 4.2 Electrochemical Impedance Spectroscopy for Genosensing -- 4.2.1 Theoretical Background -- 4.2.2 Impedimetric DNA Biosensors -- 4.3 Nanostructured Carbon Used in Impedimetric Genosensors -- 4.3.1 Carbon Nanotubes and Nanostructured Diamond -- 4.3.2 Graphene-Based Platforms -- 4.4 Nanostructured Gold Used in Impedimetric Genosensors -- 4.4.1 Gold Nanoelectrodes -- 4.4.2 Gold Nanoparticles Used as Labels -- 4.5 Quantum Dots for Impedimetric Genosensing.
4.6 Impedimetric Genosensors for Point-of-Care Diagnosis -- 4.7 Conclusions (Past, Present and Future Perspectives) -- Acknowledgements -- References -- 5 Graphene: Insights of its Application in Electrochemical Biosensors for Environmental Monitoring -- 5.1 Introduction -- 5.1.1 Graphene (GR) -- 5.1.2 Electrochemical Sensors -- 5.1.3 Graphene-based (bio)sensors: Generalities -- 5.2 Environmental Applications of Graphene-based Biosensors -- 5.2.1 Heavy Metals -- 5.2.2 Phenols -- 5.2.3 Pesticides -- 5.2.4 Other Pollutants -- 5.2.4.1 Hydrogen Peroxide -- 5.2.4.2 Microorganisms -- 5.3 Conclusions and Perspectives -- References -- 6 Functional Nanomaterials for Multifarious Nanomedicine -- 6.1 Introduction -- 6.2 Nanoparticle Coatings -- 6.3 Cyclic Peptides -- 6.4 Dendrimers -- 6.5 Fullerenes/Carbon Nanotubes/Graphene -- 6.6 Functional Drug Carriers -- 6.7 MRI Scanning Nanoparticles -- 6.8 Nanoemulsions -- 6.9 Nanofibers -- 6.10 Nanoshells -- 6.11 Quantum Dots -- 6.12 Nanoimaging -- 6.13 Inorganic Nanoparticles -- 6.14 Conclusions -- Acknowledgement -- References -- Part 2: Principals and Prospective -- 7 Computational Nanochemistry Study of the Molecular Structure, Spectra and Chemical Reactivity Properties of the BFPF Green Fluorescent Protein Chromophore -- 7.1 Introduction -- 7.2 Theory and Computational Details -- 7.3 Results and Discussion -- 7.3.1 Molecular Structures -- 7.3.2 IR and UV-Vis Spectra -- 7.3.3 ECD Spectra -- 7.3.4 Dipole Moments and Polarizabilities -- 7.3.5 HOMO and LUMO Orbitals -- 7.3.6 Chemical Reactivity -- 7.4 Conclusions -- Acknowledgements -- References -- 8 Biosynthesis of Metal Nanoparticles and Their Applications -- 8.1 Introduction -- 8.2 Synthesis of Metal Nanoparticles -- 8.2.1 Biosynthesis of Metal Nanoparticles by Microbes -- 8.2.1.1 Bacteria -- 8.2.1.2 Yeast -- 8.2.1.3 Fungi.
8.2.1.4 Biosynthesis of Metal Nanoparticles by Plants -- 8.2.1.5 Biosynthesis of Metal Nanoparticles by Biomolecules -- 8.3 Applications -- 8.4 Conclusions -- Acknowledgement -- References -- 9 Ionic Discotic Liquid Crystals: Recent Advances and Applications -- 9.1 Introduction -- 9.2 Part I: Chromonic LCs -- 9.2.1 Structure-Property Relationship of Chromonic Mesogens -- 9.2.2 Applications of Chromonic Mesophases -- 9.2.2.1 Polarizing Materials -- 9.2.2.2 Monolayer and Multilayer Deposition of Chromonic LCs -- 9.2.2.3 Micropatterned Anisotropic Chromonic Films -- 9.2.2.4 Organic Electronics -- 9.3 Part II: Thermotropic Ionic Discotic Liquid Crystals -- 9.3.1 Classification Based on Different Cores -- 9.3.1.1 Benzene -- 9.3.1.2 Triphenylene -- 9.3.1.3 Perylene -- 9.3.1.4 Anthracene -- 9.3.1.5 Tricycloquinazoline -- 9.3.1.6 Triazolephthalocyanine -- 9.3.1.7 Porphyrin -- 9.3.1.8 Hexa-peri-hexabenzocoronene -- 9.3.1.9 4,4-Difluoro-4-bora-3a, 4a-diaza-s-indacene (BODIPY) -- 9.3.1.10 Trisimidazole -- 9.3.1.11 Quinolizinophenanthridinylium Cation -- 9.3.1.12 Trialkyltriazatriangulenium Cation -- 9.3.1.13 2,4,6-Triarylpyrylium Tetrafluoroborates -- 9.3.2 Ionic Metallomesogens -- 9.3.3 Ionic Discotic Compounds of Crown Ethers -- Acknowledgement -- References -- 10 Role of Advanced Materials as Nanosensors in Water Treatment -- 10.1 Introduction -- 10.2 Nanoparticles -- 10.3 Different Fabrication Methods of Nanoparticles -- 10.4 Core Material/Nanofillers -- 10.4.1 Synthesis of Fe3O4 Nanoparticles -- 10.4.2 Synthesis of TiO2 Nanoparticles -- 10.4.3 Synthesis of CdS, PbS and CuS Nanoparticles [10] -- 10.4.4 Synthesis of SiO2 Nanoparticles -- 10.5 Shell Material/Nanomatrix -- 10.5.1 Au Nanoparticles -- 10.5.2 Ag Nanoparticles -- 10.6 Core-Shell Material -- 10.6.1 SiO2@Ag Core-Shell Nanocomposites -- 10.6.2 SiO2@Au Core-Shell Nanocomposites.
10.6.3 Fe3O4@Au Core-Shell Nanocomposites -- 10.6.4 Ag@Au Core-Shell Nanocomposites -- 10.7 Properties of Metal Nanoparticles and Core-Shell Nanocomposites -- 10.8 Detection of Heavy Metals Using Smart Core-Shell Nanocomposites -- 10.9 Conclusions -- Acknowledgement -- References -- Part 3: Advanced Structures and Properties -- 11 Application of Bioconjugated Nanoporous Gold Films in Electrochemical Biosensors -- 11.1 Introduction -- 11.2 Fabrication of Nanoporous Gold -- 11.2.1 Dealloying Procedure -- 11.2.2 Template-Assisted Method -- 11.2.3 Electrochemical Method -- 11.3 Nucleic Acids (NAs)-Based Biosensors -- 11.3.1 NPG-Based DNA Sensors -- 11.3.2 NPG-Based Aptasensors -- 11.4 Protein-Nanostructured Gold Bioconjugates in Biosensing -- 11.4.1 Conjugation of Proteins to Nanoparticles -- 11.4.1.1 Covalent Protein-Nanoparticle Conjugates -- 11.4.1.2 Noncovalent Protein-Nanoparticle Conjugation -- 11.4.2 Nanoporous Materials -- 11.4.2.1 Enzyme-Modified NPG-Based Biosensors -- 11.4.2.2 Antibody-Modified NPG-Based Biosensors -- 11.4.2.3 Bioconjugation of Other Proteins to NPG -- 11.5 Conclusion -- References -- 12 Combination of Molecular Imprinting and Nanotechnology: Beginning of a New Horizon -- 12.1 Introduction -- 12.1.1 What Is "Imprinting"? -- 12.1.2 The MIP 'Rule of Six' -- 12.1.3 Downside of 'Imprinted Materials' -- 12.1.4 How to Overcome the Problems -- 12.2 Classification of Imprinted Nanomaterials -- 12.2.1 Imprinting onto the Nanostructure Surfaces -- 12.2.1.1 Imprinted Novel Metal Nanoparticles (NPs) -- 12.2.1.2 Imprinted Magnetic Nanoparticle -- 12.2.1.3 Silica Nanoparticles -- 12.2.1.4 Core-Shell Nanoparticle -- 12.2.1.5 Quantum Dots -- 12.2.1.6 Nanobeads -- 12.2.1.7 Nanowires/Fibers -- 12.2.1.8 Carbon Nanotubes (CNTs) -- 12.2.1.9 TiO2 Nanotubes -- 12.2.1.10 Nanocomposite Materials -- 12.2.2 Thin-Film Imprinting.
12.3 Imprinted Materials at Nanoscale -- 12.3.1 Imprinted Nanoparticle -- 12.3.2 Nanospheres -- 12.3.3 Comparative Study between Micro- and Nano-imprinted Materials -- 12.3.4 Imprinted Nanogel -- 12.3.5 Nanoimprint Lithography -- 12.4 Conclusions and Future Outlook -- Acknowledgements -- References -- 13 Structural, Electrical and Magnetic Properties of Pure and Substituted BiFeO3 Multiferroics -- 13.1 Introduction -- 13.1.1 Ferroics -- 13.1.2 Classification of Ferroics -- 13.1.2.1 Some Important Features of Ferroelectrics -- 13.1.2.2 Ferromagnetics -- 13.1.2.3 Ferroelastic -- 13.1.2.4 Ferrotoroidic -- 13.1.3 Multiferroics -- 13.1.3.1 History of Multiferroics -- 13.1.3.2 Properties of Multiferroics -- 13.1.4 Previous Work Done on Multiferroic BiFeO3 -- 13.2 Synthesis of Materials -- 13.2.1 Materials Preparation Method -- 13.2.1.1 Sol-Gel Process -- 13.2.1.2 Wet Chemical Method -- 13.2.1.3 Autocombustion Technique -- 13.2.1.4 Gel Casting Method -- 13.2.1.5 Coprecipitation Method -- 13.2.1.6 Hydrothermal Method -- 13.2.1.7 Solid-State Reaction Method -- 13.3 Structural and Morphological Analyses -- 13.3.1 X-ray Diffraction -- 13.3.1.1 Introduction -- 13.3.1.2 A Brief Theory of X-ray Diffraction -- 13.3.1.3 Full-Pattern Analysis - the Rietveld Method -- 13.3.1.4 Actual Experimental Condition for X-ray Diffraction -- 13.3.1.5 Some of the Important Results on Structural Analysis -- 13.3.2 Morphological (SEM) Analysis -- 13.3.2.1 Actual Experiment -- 13.3.2.2 Some of the Important Results -- 13.4 Electrical Properties -- 13.4.1 Dielectric Studies -- 13.4.1.1 Basic Concept of Dielectric Constant -- 13.4.1.2 Factors Affecting the Dielectric Constant of a Material -- 13.4.1.3 The Dielectric Loss -- 13.4.1.4 Dielectric Measurements -- 13.4.1.5 Results and Discussion -- 13.4.2 DC Conductivity -- 13.4.2.1 Basic Laws and Electrical Properties of Materials.
13.4.2.2 Measurement.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1: New Materials and Methods -- 1 ZnO and Graphene Microelectrode Applications in Biosensing -- 1.1 Biosensors Based on Nanostructured Materials -- 1.2 Graphene Nanomaterials Used in Electrochemical Biosensor Fabrication -- 1.3 ZnO Nanostructures Used in the Fabrication of Electrochemical Biosensors -- 1.4 Miniaturized Graphene and ZnO Nanostructured Electrochemical Biosensors for Food and Clinical Applications -- 1.4.1 Amperometric Biosensors -- 1.4.2 Potentiometric Sensors -- 1.5 Conclusions and Future Prospects -- Acknowledgements -- References -- 2 Assembly of Polymers/Metal Nanoparticles and Their Applications as Medical Devices -- 2.1 Introduction -- 2.2 Platinum Nanoparticles -- 2.3 Gold Nanoparticles -- 2.4 Silver Nanoparticles -- 2.5 Assembly of Polymers/Silver Nanoparticles -- 2.6 Conclusion -- Acknowledgements -- References -- 3 Gold Nanoparticle-Based Electrochemical Biosensors for Medical Applications -- 3.1 Introduction -- 3.1.1 Electrochemical Biosensors -- 3.2 Gold Nanoparticles -- 3.2.1 Preparation of AuNPs -- 3.2.2 AuNP Modified Electrodes -- 3.2.3 AuNP-Based Electrochemical Biosensors for Medical Applications -- 3.3 Conclusion -- References -- 4 Impedimetric DNA Biosensors Based on Nanomaterials -- 4.1 Introduction -- 4.1.1 DNA Biosensors (Genosensors) -- 4.1.2 Electrochemical DNA Biosensors -- 4.2 Electrochemical Impedance Spectroscopy for Genosensing -- 4.2.1 Theoretical Background -- 4.2.2 Impedimetric DNA Biosensors -- 4.3 Nanostructured Carbon Used in Impedimetric Genosensors -- 4.3.1 Carbon Nanotubes and Nanostructured Diamond -- 4.3.2 Graphene-Based Platforms -- 4.4 Nanostructured Gold Used in Impedimetric Genosensors -- 4.4.1 Gold Nanoelectrodes -- 4.4.2 Gold Nanoparticles Used as Labels -- 4.5 Quantum Dots for Impedimetric Genosensing.

4.6 Impedimetric Genosensors for Point-of-Care Diagnosis -- 4.7 Conclusions (Past, Present and Future Perspectives) -- Acknowledgements -- References -- 5 Graphene: Insights of its Application in Electrochemical Biosensors for Environmental Monitoring -- 5.1 Introduction -- 5.1.1 Graphene (GR) -- 5.1.2 Electrochemical Sensors -- 5.1.3 Graphene-based (bio)sensors: Generalities -- 5.2 Environmental Applications of Graphene-based Biosensors -- 5.2.1 Heavy Metals -- 5.2.2 Phenols -- 5.2.3 Pesticides -- 5.2.4 Other Pollutants -- 5.2.4.1 Hydrogen Peroxide -- 5.2.4.2 Microorganisms -- 5.3 Conclusions and Perspectives -- References -- 6 Functional Nanomaterials for Multifarious Nanomedicine -- 6.1 Introduction -- 6.2 Nanoparticle Coatings -- 6.3 Cyclic Peptides -- 6.4 Dendrimers -- 6.5 Fullerenes/Carbon Nanotubes/Graphene -- 6.6 Functional Drug Carriers -- 6.7 MRI Scanning Nanoparticles -- 6.8 Nanoemulsions -- 6.9 Nanofibers -- 6.10 Nanoshells -- 6.11 Quantum Dots -- 6.12 Nanoimaging -- 6.13 Inorganic Nanoparticles -- 6.14 Conclusions -- Acknowledgement -- References -- Part 2: Principals and Prospective -- 7 Computational Nanochemistry Study of the Molecular Structure, Spectra and Chemical Reactivity Properties of the BFPF Green Fluorescent Protein Chromophore -- 7.1 Introduction -- 7.2 Theory and Computational Details -- 7.3 Results and Discussion -- 7.3.1 Molecular Structures -- 7.3.2 IR and UV-Vis Spectra -- 7.3.3 ECD Spectra -- 7.3.4 Dipole Moments and Polarizabilities -- 7.3.5 HOMO and LUMO Orbitals -- 7.3.6 Chemical Reactivity -- 7.4 Conclusions -- Acknowledgements -- References -- 8 Biosynthesis of Metal Nanoparticles and Their Applications -- 8.1 Introduction -- 8.2 Synthesis of Metal Nanoparticles -- 8.2.1 Biosynthesis of Metal Nanoparticles by Microbes -- 8.2.1.1 Bacteria -- 8.2.1.2 Yeast -- 8.2.1.3 Fungi.

8.2.1.4 Biosynthesis of Metal Nanoparticles by Plants -- 8.2.1.5 Biosynthesis of Metal Nanoparticles by Biomolecules -- 8.3 Applications -- 8.4 Conclusions -- Acknowledgement -- References -- 9 Ionic Discotic Liquid Crystals: Recent Advances and Applications -- 9.1 Introduction -- 9.2 Part I: Chromonic LCs -- 9.2.1 Structure-Property Relationship of Chromonic Mesogens -- 9.2.2 Applications of Chromonic Mesophases -- 9.2.2.1 Polarizing Materials -- 9.2.2.2 Monolayer and Multilayer Deposition of Chromonic LCs -- 9.2.2.3 Micropatterned Anisotropic Chromonic Films -- 9.2.2.4 Organic Electronics -- 9.3 Part II: Thermotropic Ionic Discotic Liquid Crystals -- 9.3.1 Classification Based on Different Cores -- 9.3.1.1 Benzene -- 9.3.1.2 Triphenylene -- 9.3.1.3 Perylene -- 9.3.1.4 Anthracene -- 9.3.1.5 Tricycloquinazoline -- 9.3.1.6 Triazolephthalocyanine -- 9.3.1.7 Porphyrin -- 9.3.1.8 Hexa-peri-hexabenzocoronene -- 9.3.1.9 4,4-Difluoro-4-bora-3a, 4a-diaza-s-indacene (BODIPY) -- 9.3.1.10 Trisimidazole -- 9.3.1.11 Quinolizinophenanthridinylium Cation -- 9.3.1.12 Trialkyltriazatriangulenium Cation -- 9.3.1.13 2,4,6-Triarylpyrylium Tetrafluoroborates -- 9.3.2 Ionic Metallomesogens -- 9.3.3 Ionic Discotic Compounds of Crown Ethers -- Acknowledgement -- References -- 10 Role of Advanced Materials as Nanosensors in Water Treatment -- 10.1 Introduction -- 10.2 Nanoparticles -- 10.3 Different Fabrication Methods of Nanoparticles -- 10.4 Core Material/Nanofillers -- 10.4.1 Synthesis of Fe3O4 Nanoparticles -- 10.4.2 Synthesis of TiO2 Nanoparticles -- 10.4.3 Synthesis of CdS, PbS and CuS Nanoparticles [10] -- 10.4.4 Synthesis of SiO2 Nanoparticles -- 10.5 Shell Material/Nanomatrix -- 10.5.1 Au Nanoparticles -- 10.5.2 Ag Nanoparticles -- 10.6 Core-Shell Material -- 10.6.1 SiO2@Ag Core-Shell Nanocomposites -- 10.6.2 SiO2@Au Core-Shell Nanocomposites.

10.6.3 Fe3O4@Au Core-Shell Nanocomposites -- 10.6.4 Ag@Au Core-Shell Nanocomposites -- 10.7 Properties of Metal Nanoparticles and Core-Shell Nanocomposites -- 10.8 Detection of Heavy Metals Using Smart Core-Shell Nanocomposites -- 10.9 Conclusions -- Acknowledgement -- References -- Part 3: Advanced Structures and Properties -- 11 Application of Bioconjugated Nanoporous Gold Films in Electrochemical Biosensors -- 11.1 Introduction -- 11.2 Fabrication of Nanoporous Gold -- 11.2.1 Dealloying Procedure -- 11.2.2 Template-Assisted Method -- 11.2.3 Electrochemical Method -- 11.3 Nucleic Acids (NAs)-Based Biosensors -- 11.3.1 NPG-Based DNA Sensors -- 11.3.2 NPG-Based Aptasensors -- 11.4 Protein-Nanostructured Gold Bioconjugates in Biosensing -- 11.4.1 Conjugation of Proteins to Nanoparticles -- 11.4.1.1 Covalent Protein-Nanoparticle Conjugates -- 11.4.1.2 Noncovalent Protein-Nanoparticle Conjugation -- 11.4.2 Nanoporous Materials -- 11.4.2.1 Enzyme-Modified NPG-Based Biosensors -- 11.4.2.2 Antibody-Modified NPG-Based Biosensors -- 11.4.2.3 Bioconjugation of Other Proteins to NPG -- 11.5 Conclusion -- References -- 12 Combination of Molecular Imprinting and Nanotechnology: Beginning of a New Horizon -- 12.1 Introduction -- 12.1.1 What Is "Imprinting"? -- 12.1.2 The MIP 'Rule of Six' -- 12.1.3 Downside of 'Imprinted Materials' -- 12.1.4 How to Overcome the Problems -- 12.2 Classification of Imprinted Nanomaterials -- 12.2.1 Imprinting onto the Nanostructure Surfaces -- 12.2.1.1 Imprinted Novel Metal Nanoparticles (NPs) -- 12.2.1.2 Imprinted Magnetic Nanoparticle -- 12.2.1.3 Silica Nanoparticles -- 12.2.1.4 Core-Shell Nanoparticle -- 12.2.1.5 Quantum Dots -- 12.2.1.6 Nanobeads -- 12.2.1.7 Nanowires/Fibers -- 12.2.1.8 Carbon Nanotubes (CNTs) -- 12.2.1.9 TiO2 Nanotubes -- 12.2.1.10 Nanocomposite Materials -- 12.2.2 Thin-Film Imprinting.

12.3 Imprinted Materials at Nanoscale -- 12.3.1 Imprinted Nanoparticle -- 12.3.2 Nanospheres -- 12.3.3 Comparative Study between Micro- and Nano-imprinted Materials -- 12.3.4 Imprinted Nanogel -- 12.3.5 Nanoimprint Lithography -- 12.4 Conclusions and Future Outlook -- Acknowledgements -- References -- 13 Structural, Electrical and Magnetic Properties of Pure and Substituted BiFeO3 Multiferroics -- 13.1 Introduction -- 13.1.1 Ferroics -- 13.1.2 Classification of Ferroics -- 13.1.2.1 Some Important Features of Ferroelectrics -- 13.1.2.2 Ferromagnetics -- 13.1.2.3 Ferroelastic -- 13.1.2.4 Ferrotoroidic -- 13.1.3 Multiferroics -- 13.1.3.1 History of Multiferroics -- 13.1.3.2 Properties of Multiferroics -- 13.1.4 Previous Work Done on Multiferroic BiFeO3 -- 13.2 Synthesis of Materials -- 13.2.1 Materials Preparation Method -- 13.2.1.1 Sol-Gel Process -- 13.2.1.2 Wet Chemical Method -- 13.2.1.3 Autocombustion Technique -- 13.2.1.4 Gel Casting Method -- 13.2.1.5 Coprecipitation Method -- 13.2.1.6 Hydrothermal Method -- 13.2.1.7 Solid-State Reaction Method -- 13.3 Structural and Morphological Analyses -- 13.3.1 X-ray Diffraction -- 13.3.1.1 Introduction -- 13.3.1.2 A Brief Theory of X-ray Diffraction -- 13.3.1.3 Full-Pattern Analysis - the Rietveld Method -- 13.3.1.4 Actual Experimental Condition for X-ray Diffraction -- 13.3.1.5 Some of the Important Results on Structural Analysis -- 13.3.2 Morphological (SEM) Analysis -- 13.3.2.1 Actual Experiment -- 13.3.2.2 Some of the Important Results -- 13.4 Electrical Properties -- 13.4.1 Dielectric Studies -- 13.4.1.1 Basic Concept of Dielectric Constant -- 13.4.1.2 Factors Affecting the Dielectric Constant of a Material -- 13.4.1.3 The Dielectric Loss -- 13.4.1.4 Dielectric Measurements -- 13.4.1.5 Results and Discussion -- 13.4.2 DC Conductivity -- 13.4.2.1 Basic Laws and Electrical Properties of Materials.

13.4.2.2 Measurement.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.