ORPP logo
Image from Google Jackets

Optics and Artificial Vision.

By: Contributor(s): Material type: TextTextSeries: IOP Series in Emerging Technologies in Optics and Photonics SeriesPublisher: Bristol : Institute of Physics Publishing, 2021Copyright date: ©2021Edition: 1st edDescription: 1 online resource (231 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780750346344
Subject(s): Genre/Form: Additional physical formats: Print version:: Optics and Artificial VisionDDC classification:
  • 006.37
LOC classification:
  • TA1634 .G669 2021
Online resources:
Contents:
Intro -- Preface -- Acknowledgements -- Acknowledgements of Rafael G González-Acuña -- Acknowledgements of Héctor A Chaparro-Romo -- Acknowledgements of Israel Melendez-Montoya -- Author biographies -- Rafael G González-Acuña -- Héctor A Chaparro-Romo -- Israel Melendez-Montoya -- Chapter 1 Optics, sensors and images -- 1.1 Introduction -- 1.2 Optics and images -- 1.3 Vision -- 1.4 Optical instruments and optical design -- 1.5 Cameras -- 1.6 CCD sensor -- 1.7 CMOS sensor -- 1.8 Python as a program language for this book -- 1.9 Artificial vision and computer vision -- 1.10 End notes -- References -- Chapter 2 Introduction to computer vision -- 2.1 Loading and saving images -- 2.2 Image basics -- 2.3 Colour spaces -- 2.4 Basic image processing -- 2.4.1 Translation -- 2.4.2 Rotation -- 2.5 Resizing images -- 2.5.1 Flipping -- 2.5.2 Cropping -- 2.5.3 Image arithmetic -- 2.5.4 Masking -- 2.6 Kernels and morphological operations -- 2.6.1 Erosion and dilatation -- 2.7 Blurring -- 2.8 Thresholding -- 2.9 Gradients and edge detection -- 2.9.1 Gradients -- 2.9.2 Edges -- 2.10 Histograms -- 2.11 End notes -- References -- Chapter 3 Optical flow -- 3.1 Introduction -- 3.2 The Lucas-Kanade algorithm -- 3.2.1 Assumptions -- 3.2.2 The theory behind the Lucas-Kanade algorithm -- 3.2.3 The Lucas-Kanade algorithm step by step -- 3.2.4 Failures of the Lucas-Kanade algorithm -- 3.3 Application of the Lucas-Kanade algorithm and its Python code -- 3.4 The optical flow model -- 3.5 The Horn-Schunck algorithm -- 3.5.1 The smoothness principle -- 3.5.2 The mathematical model -- 3.6 End notes -- References -- Chapter 4 Object detection algorithms -- 4.1 Object detection -- 4.1.1 Statistical interpretation of correlation -- 4.1.2 Fourier interpretation of correlation -- 4.2 Sliding windows and image pyramids -- 4.3 The histogram of oriented gradients descriptor.
4.4 Support vector machine -- 4.4.1 The concepts behind the SVM -- 4.5 End notes -- References -- Chapter 5 Image descriptors -- 5.1 Introduction to image descriptors -- 5.2 Basic statistics -- 5.3 Hu moments -- 5.4 Zernike moments -- 5.5 Haralick features -- 5.6 Local binary patterns -- 5.7 Keypoint detectors -- 5.7.1 FAST -- 5.7.2 The Harris method -- 5.7.3 GFTT -- 5.7.4 DoG -- 5.7.5 Fast Hessian -- 5.7.6 STAR -- 5.7.7 MSER -- 5.7.8 BRISK -- 5.7.9 ORB -- 5.8 Local invariant descriptors -- 5.8.1 SIFT -- 5.8.2 SURF -- 5.9 Binary descriptors -- 5.9.1 BRIEF -- 5.9.2 ORB binary descriptor -- 5.9.3 The BRISK binary descriptor -- 5.9.4 FREAK -- 5.10 End notes -- References -- Chapter 6 Neural networks -- 6.1 Introduction -- 6.2 Neural networks in a nutshell -- 6.3 Single perceptron learning -- 6.3.1 Continuous activation function perceptron -- 6.3.2 Single perceptron implementation -- 6.4 Multilayer perceptrons -- 6.4.1 Backpropagation -- 6.4.2 Maximum likelihood-binary cross-entropy -- 6.4.3 Maximum likelihood-multiple category cross-entropy -- 6.5 Convolutional neural networks -- 6.5.1 Introduction -- 6.5.2 Convolution and cross-correlation -- 6.5.3 Why CNNs instead of MLPs? -- 6.6 Metrics -- 6.7 CNN architectures -- 6.8 Transfer learning -- 6.9 End notes -- References -- Chapter 7 Optical character recognition -- 7.1 Introduction -- 7.2 Problems in classical OCR -- 7.3 The basic scheme of a classical OCR algorithm -- 7.3.1 Binarization -- 7.3.2 Fragmentation or segmentation of the image -- 7.3.3 Component thinning -- 7.3.4 Comparison with patterns -- 7.4 Classical OCR using machine learning -- 7.5 Modern OCR with deep learning -- 7.5.1 Handwritten text recognition -- 7.5.2 Indexing with databases -- 7.6 OCR with Tesseract -- 7.7 End notes -- References -- Chapter 8 Facial recognition -- 8.1 Introduction to facial recognition.
8.2 Local binary patterns for facial recognition -- 8.3 The eigenfaces algorithm -- 8.4 Example using the CALTECH faces dataset -- 8.4.1 Create a personal dataset -- 8.5 A LBP face recognizer for your own face -- 8.6 Deep learning facial recognition -- 8.6.1 Face extraction -- 8.7 End notes -- References -- Chapter 9 Artificial vision case studies -- 9.1 Measuring the camera-object distance -- 9.1.1 Camera distortion calibration -- 9.1.2 Using camera sensor size or a previous distance -- 9.2 Single image depth estimation -- 9.2.1 Consistent video depth estimation -- 9.2.2 Adabins -- 9.3 State-of-the-art real-time facial detection -- 9.3.1 Introduction -- 9.4 Fruit classification -- 9.5 End notes -- References.
Summary: This book provides a concise introduction to computer vision. It equips the reader with the tools needed to understand and engage with digital image processing, the algorithms of optical flow and the algorithms of object detection, using Python® software to show real, implemented applications in industry. A key resource for industry engineers with projects related to computer vision and researchers working at the intersection of AI and optics.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Preface -- Acknowledgements -- Acknowledgements of Rafael G González-Acuña -- Acknowledgements of Héctor A Chaparro-Romo -- Acknowledgements of Israel Melendez-Montoya -- Author biographies -- Rafael G González-Acuña -- Héctor A Chaparro-Romo -- Israel Melendez-Montoya -- Chapter 1 Optics, sensors and images -- 1.1 Introduction -- 1.2 Optics and images -- 1.3 Vision -- 1.4 Optical instruments and optical design -- 1.5 Cameras -- 1.6 CCD sensor -- 1.7 CMOS sensor -- 1.8 Python as a program language for this book -- 1.9 Artificial vision and computer vision -- 1.10 End notes -- References -- Chapter 2 Introduction to computer vision -- 2.1 Loading and saving images -- 2.2 Image basics -- 2.3 Colour spaces -- 2.4 Basic image processing -- 2.4.1 Translation -- 2.4.2 Rotation -- 2.5 Resizing images -- 2.5.1 Flipping -- 2.5.2 Cropping -- 2.5.3 Image arithmetic -- 2.5.4 Masking -- 2.6 Kernels and morphological operations -- 2.6.1 Erosion and dilatation -- 2.7 Blurring -- 2.8 Thresholding -- 2.9 Gradients and edge detection -- 2.9.1 Gradients -- 2.9.2 Edges -- 2.10 Histograms -- 2.11 End notes -- References -- Chapter 3 Optical flow -- 3.1 Introduction -- 3.2 The Lucas-Kanade algorithm -- 3.2.1 Assumptions -- 3.2.2 The theory behind the Lucas-Kanade algorithm -- 3.2.3 The Lucas-Kanade algorithm step by step -- 3.2.4 Failures of the Lucas-Kanade algorithm -- 3.3 Application of the Lucas-Kanade algorithm and its Python code -- 3.4 The optical flow model -- 3.5 The Horn-Schunck algorithm -- 3.5.1 The smoothness principle -- 3.5.2 The mathematical model -- 3.6 End notes -- References -- Chapter 4 Object detection algorithms -- 4.1 Object detection -- 4.1.1 Statistical interpretation of correlation -- 4.1.2 Fourier interpretation of correlation -- 4.2 Sliding windows and image pyramids -- 4.3 The histogram of oriented gradients descriptor.

4.4 Support vector machine -- 4.4.1 The concepts behind the SVM -- 4.5 End notes -- References -- Chapter 5 Image descriptors -- 5.1 Introduction to image descriptors -- 5.2 Basic statistics -- 5.3 Hu moments -- 5.4 Zernike moments -- 5.5 Haralick features -- 5.6 Local binary patterns -- 5.7 Keypoint detectors -- 5.7.1 FAST -- 5.7.2 The Harris method -- 5.7.3 GFTT -- 5.7.4 DoG -- 5.7.5 Fast Hessian -- 5.7.6 STAR -- 5.7.7 MSER -- 5.7.8 BRISK -- 5.7.9 ORB -- 5.8 Local invariant descriptors -- 5.8.1 SIFT -- 5.8.2 SURF -- 5.9 Binary descriptors -- 5.9.1 BRIEF -- 5.9.2 ORB binary descriptor -- 5.9.3 The BRISK binary descriptor -- 5.9.4 FREAK -- 5.10 End notes -- References -- Chapter 6 Neural networks -- 6.1 Introduction -- 6.2 Neural networks in a nutshell -- 6.3 Single perceptron learning -- 6.3.1 Continuous activation function perceptron -- 6.3.2 Single perceptron implementation -- 6.4 Multilayer perceptrons -- 6.4.1 Backpropagation -- 6.4.2 Maximum likelihood-binary cross-entropy -- 6.4.3 Maximum likelihood-multiple category cross-entropy -- 6.5 Convolutional neural networks -- 6.5.1 Introduction -- 6.5.2 Convolution and cross-correlation -- 6.5.3 Why CNNs instead of MLPs? -- 6.6 Metrics -- 6.7 CNN architectures -- 6.8 Transfer learning -- 6.9 End notes -- References -- Chapter 7 Optical character recognition -- 7.1 Introduction -- 7.2 Problems in classical OCR -- 7.3 The basic scheme of a classical OCR algorithm -- 7.3.1 Binarization -- 7.3.2 Fragmentation or segmentation of the image -- 7.3.3 Component thinning -- 7.3.4 Comparison with patterns -- 7.4 Classical OCR using machine learning -- 7.5 Modern OCR with deep learning -- 7.5.1 Handwritten text recognition -- 7.5.2 Indexing with databases -- 7.6 OCR with Tesseract -- 7.7 End notes -- References -- Chapter 8 Facial recognition -- 8.1 Introduction to facial recognition.

8.2 Local binary patterns for facial recognition -- 8.3 The eigenfaces algorithm -- 8.4 Example using the CALTECH faces dataset -- 8.4.1 Create a personal dataset -- 8.5 A LBP face recognizer for your own face -- 8.6 Deep learning facial recognition -- 8.6.1 Face extraction -- 8.7 End notes -- References -- Chapter 9 Artificial vision case studies -- 9.1 Measuring the camera-object distance -- 9.1.1 Camera distortion calibration -- 9.1.2 Using camera sensor size or a previous distance -- 9.2 Single image depth estimation -- 9.2.1 Consistent video depth estimation -- 9.2.2 Adabins -- 9.3 State-of-the-art real-time facial detection -- 9.3.1 Introduction -- 9.4 Fruit classification -- 9.5 End notes -- References.

This book provides a concise introduction to computer vision. It equips the reader with the tools needed to understand and engage with digital image processing, the algorithms of optical flow and the algorithms of object detection, using Python® software to show real, implemented applications in industry. A key resource for industry engineers with projects related to computer vision and researchers working at the intersection of AI and optics.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.