Bioinspired Materials Science and Engineering.
Material type:
- text
- computer
- online resource
- 9781119390336
- 610.28
- QP517.B56 .B565 2018
Intro -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Foreword -- Preface -- Introduction to Science and Engineering Principles for the Development of Bioinspired Materials -- I.1 Bioinspiration -- I.2 BioinspiredMaterials -- I.3 Biofabrication -- I.3.1 Summary of Part I Biofabrication -- I.4 Biofabrication Strategies -- I.4.1 Conventional Biofabrication Strategies -- I.4.2 Advanced Biofabrication Strategies -- I.5 Part II Biomacromolecules -- I.5.1 Summary of Part II Biomacromolecules -- I.5.2 Carbohydrates -- I.5.3 Proteins -- I.5.4 Nucleic Acids -- I.6 Part III Biomaterials -- I.6.1 Summary of Part III Biomaterials -- I.6.2 Features of Biomaterials -- I.6.3 Current Advances in Biomaterials Science -- I.7 Scope of the Book -- Acknowledgments -- References -- Part I Biofabrication -- Chapter 1 Biotemplating Principles -- 1.1 Introduction -- 1.2 Mineralization in Nature -- 1.2.1 Biomineralization -- 1.2.2 Geological Mineralization -- 1.3 Petrified Wood in Construction and Technology -- 1.4 Structural Description and Emulation -- 1.4.1 Antiquity -- 1.4.2 Modern Age: Advent of the Light Microscope -- 1.4.3 Aqueous Silicon Dioxide, Prime Mineralization Agent -- 1.4.4 Artificial Petrifaction of Wood -- 1.5 Characteristic Parameters -- 1.5.1 Hierarchical Structuring -- 1.5.2 Specific Surface Areas -- 1.5.3 Pore Structures -- 1.6 Applications -- 1.6.1 Mechanoceramics -- 1.6.2 Nanoparticle Substrates -- 1.6.3 Filter and Burner Assemblies -- 1.6.4 Photovoltaic and Sensing Materials -- 1.6.5 Wettability Control -- 1.6.6 Image Plates -- 1.7 Limitations and Challenges -- 1.7.1 Particle Growth -- 1.7.2 Comparison with Alternating Processing Principles -- 1.7.3 Availability -- 1.8 Conclusion and Future Topics -- Acknowledgments -- Notes -- References -- Chapter 2 Tubular Tissue Engineering Based on Microfluidics -- 2.1 Introduction.
2.2 Natural Tubular Structures -- 2.2.1 Blood Vessels -- 2.2.2 Lymphatic Vessels -- 2.2.3 Vessels in the Digestive System -- 2.2.4 Vessels in the Respiratory System -- 2.2.5 The Features of the Natural Tubular Structures -- 2.3 Microfluidics -- 2.3.1 An Introduction to Microfluidics -- 2.3.2 Microfluidics to Manipulate Cells -- 2.4 Fabrication of Tubular Structures by Microfluidics -- 2.4.1 Angiogenesis -- 2.4.2 Tissue Engineering of Natural Tubes -- 2.4.3 Tissue Engineering of Other Tubular Structures -- 2.5 Conclusion -- Acknowledgments -- References -- Chapter 3 Construction of Three‐Dimensional Tissues with Capillary Networks by Coating of Nanometer‐ or Micrometer‐Sized Film on Cell Surfaces -- 3.1 Introduction -- 3.2 Fabrication of Nanometer‐ and Micrometer‐Sized ECM Layers on Cell Surfaces -- 3.2.1 Control of Cell Surface by FN Nanofilms -- 3.2.2 Control of Cell Surface by Collagen Microfilms -- 3.3 3D-Tissue with Various Thicknesses and Cell Densities -- 3.4 Fabrication of Vascularized 3D‐Tissues and Their Applications -- 3.5 Conclusion -- Acknowledgments -- References -- Chapter 4 Three-dimensional Biofabrication on Nematic Ordered Cellulose Templates -- 4.1 Introduction -- 4.2 What Is Nematic Ordered Cellulose (NOC)? -- 4.2.1 Nematic Ordered Cellulose -- 4.2.2 Various Nematic Ordered Templates and Modified Nematic Ordered Cellulose -- 4.3 Exclusive Surface Properties of NOC and Its Unique Applications -- 4.3.1 Bio-Directed Epitaxial Nano-Deposition on Molecular Tracks of the NOC Template -- 4.3.2 Critical Factors in Bio‐Directed Epitaxial Nano‐Deposition on Molecular Tracks -- 4.3.3 Regulated Patterns of Bacterial Movements Based on Their Secreted Cellulose Nanofibers Interacting Interfacially with Ordered Chitin and Honeycomb Cellulose Templates.
4.3.4 NOC Templates Mediating Order-Patterned Deposition Accompanied by Synthesis of Calcium Phosphates as Biomimic Mineralization -- 4.3.5 Three-Dimensional Culture of Epidermal Cells on NOC Scaffolds -- 4.4 Conclusion -- References -- Chapter 5 Preparation and Application of Biomimetic Materials Inspired by Mussel Adhesive Proteins -- 5.1 Introduction -- 5.2 Various Research Studies -- 5.3 Conclusion -- References -- Chapter 6 Self-assembly of Polylactic Acid-based Amphiphilic Block Copolymers and Their Application in the Biomedical Field -- 6.1 Introduction -- 6.2 Micellar Structures from PLA‐based Amphiphilic Block Copolymers -- 6.2.1 Preparation and Mechanism of Micellar Structures -- 6.2.2 Stability and Stimuli‐Responsive Properties: Molecular Design and Biomedical Applications -- 6.3 Hydrogels from PLA‐based Amphiphilic Block Copolymers -- 6.3.1 Mechanism of Hydrogel Formation from PLA‐based Amphiphilic Block Copolymers -- 6.3.2 Properties and Biomedical Applications of Hydrogel from PLA‐based Amphiphilic Block Copolymers -- 6.4 Conclusion -- Acknowledgments -- References -- Part II Biomacromolecules -- Chapter 7 Electroconductive Bioscaffolds for 2D and 3D Cell Culture -- 7.1 Introduction -- 7.2 Electrical Stimulation -- 7.3 Electroconductive Bioscaffolds -- 7.3.1 Conductive Polymers-based Electroconductive Bioscaffolds -- 7.3.2 Carbon Nanotubes-based Electroconductive Bioscaffolds -- 7.3.3 Graphene-based Electroconductive Bioscaffolds -- 7.4 Conclusion -- Acknowledgments -- References -- Chapter 8 Starch and Plant Storage Polysaccharides -- 8.1 Starch and Other Seed Polysaccharides: Availability, Molecular Structure, and Heterogeneity -- 8.1.1 Molecular Structure and Composition of Seeds and Cereal Grains -- 8.1.2 Starch Hierarchical Structure from Bonds to the Granule -- 8.1.3 Crystalline Structure -- 8.1.4 Granular Structure.
8.1.5 Mannans, Galactomannans, and Glucomannans -- 8.1.6 Xyloglucans -- 8.1.7 Xylans. Arabinoxylans, Glucuronoxylans, and Glucuronoarabinoxylans -- 8.2 Effect of the Molecular Structure of Starch and Seed Polysaccharides on the Macroscopic Properties of Derived Carbohydrate‐based Materials -- 8.2.1 Factors Affecting Starch Digestibility -- 8.2.2 Structural Aspects of Seed Polysaccharides Affecting Configuration and Macroscopic Properties -- 8.3 Chemo-enzymatic Modification Routes for Starch and Seed Polysaccharides -- 8.4 Conclusion -- References -- Chapter 9 Conformational Properties of Polysaccharide Derivatives -- 9.1 Introduction -- 9.2 Theoretical Backbone to Determine the Chain Conformation of Linear and Cyclic Polymers from Dilute Solution Properties -- 9.3 Chain Conformation of Linear Polysaccharides Carbamate Derivatives in Dilute Solution -- 9.3.1 Effects of the Main Chain Linkage of the Polysaccharides Phenylcarbamate Derivatives -- 9.3.2 Effects of Hydrogen Bonds to Stabilize the Helical Structure -- 9.3.3 Enantiomeric Composition Dependent Chain Dimensions: ATBC and ATEC in d‐, dl‐, l-ethyl lactates [72, 76] -- 9.3.4 Solvent-Dependent Helical Structure and the Chain Stiffness of Amylose Phenylcarbamates in Polar Solvents -- 9.4 Lyotropic Liquid Crystallinity of Polysaccharide Carbamate Derivatives -- 9.5 Cyclic Amylose Carbamate Derivatives: An Application to Rigid Cyclic Polymers -- 9.6 Conclusion -- Appendix: Wormlike Chain Parameters for Polysaccharide Carbamate Derivatives -- References -- Chapter 10 Silk Proteins: A Natural Resource for Biomaterials -- 10.1 Introduction -- 10.2 Bio-synthesis of Silk Proteins -- 10.2.1 Silkworm Silk Glands -- 10.2.2 Regulation of Silk Proteins Synthesis -- 10.2.3 Synthesis of Fibroin -- 10.2.4 Synthesis of Sericin -- 10.2.5 Silk Filament Assembly -- 10.3 Extraction of Silk Proteins.
10.3.1 Silk Degumming -- 10.3.2 Fibroin Regeneration -- 10.3.3 Sericin Recovery -- 10.4 Structure and Physical Properties of Silk Proteins -- 10.4.1 Silk Fibroin -- 10.4.2 Silk Sericin -- 10.5 Properties of Silk Proteins in Biomedical Applications -- 10.5.1 Silk Fibroin -- 10.5.2 Biomedical Uses of Silk Sericin -- 10.6 Processing Silk Fibroin for the Preparation of Biomaterials -- 10.6.1 Fabrication of 3D Matrices -- 10.6.2 Fabrication of SF‐based Films -- 10.6.3 Preparation of SF‐based Particulate Materials -- 10.7 Processing Silk Sericin for Biomaterials Applications -- 10.8 Conclusion -- Acknowledgments -- Abbreviations -- References -- Chapter 11 Polypeptides Synthesized by Ring-opening Polymerization of N-Carboxyanhydrides: : Preparation, Assembly, and Applications -- 11.1 Introduction -- 11.2 Living Polymerization of NCAs -- 11.2.1 Transition Metal Complexes -- 11.2.2 Active Initiators Based on Amines -- 11.2.3 Recent Advances in Living NCA ROP Polymerization, 2013‐2016 -- 11.3 Synthesis of Traditional Copolypeptides and Hybrids -- 11.3.1 Random Copolypeptides -- 11.3.2 Hybrid Block Polypeptides -- 11.3.3 Block Copolypeptides -- 11.3.4 Non-linear Polypeptides and Copolypeptides -- 11.4 New Monomers and Side‐Chain Functionalized Polypeptides -- 11.4.1 New NCA Monomers -- 11.4.2 Glycopolypeptides -- 11.4.3 Water-soluble Polypeptides with Stable Helical Conformation -- 11.4.4 Stimuli-responsive Polypeptides -- 11.5 The Self-assembly of Polypeptides -- 11.5.1 Chiral Self-assembly -- 11.5.2 Self-assembly with Inorganic Sources -- 11.5.3 Microphase Separation of Polypeptides -- 11.5.4 Self-assembly in Solution -- 11.5.5 Polypeptide Gels -- 11.6 Novel Bio-related Applications of Polypeptides -- 11.6.1 Drug Delivery -- 11.6.2 Gene Delivery -- 11.6.3 Membrane Active and Antimicrobial Polypeptides -- 11.6.4 Tissue Engineering -- 11.7 Conclusion.
References.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.