Lumped Elements for RF and Microwave Circuits, Second Edition.
Material type:
- text
- computer
- online resource
- 9781630819330
- 780
- TK7874.54 .B345 2023
Lumped Elements for RF and Microwave Circuits Second Edition -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 History of Lumped Elements -- 1.2 Why Use Lumped Elements for RF and Microwave Circuits? -- 1.3 L, C, R Circuit Elements -- 1.4 Basic Design of Lumped Elements -- 1.4.1 Capacitor -- 1.4.2 Inductor -- 1.4.3 Resistor -- 1.5 Lumped-Element Modeling -- 1.6 Fabrication -- 1.7 Applications -- References -- Chapter 2 Inductors -- 2.1 Introduction -- 2.2 Basic Definitions -- 2.2.1 Inductance -- 2.2.2 Magnetic Energy -- 2.2.3 Mutual Inductance -- 2.2.4 Effective Inductance -- 2.2.5 Impedance -- 2.2.6 Time Constant -- 2.2.7 Quality Factor -- 2.2.8 Self-Resonant Frequency -- 2.2.9 Maximum Current Rating -- 2.2.10 Maximum Power Rating -- 2.2.11 Other Parameters -- 2.3 Inductor Configurations -- 2.4 Inductor Models -- 2.4.1 Analytical Models -- 2.4.2 Coupled-Line Approach -- 2.4.3 Mutual Inductance Approach -- 2.4.4 Numerical Approach -- 2.4.5 Measurement-Based Model -- 2.5 Coupling Between Inductors -- 2.5.1 Low-Resistivity Substrates -- 2.5.2 High-Resistivity Substrates -- 2.6 Electrical Representations -- 2.6.1 Series and Parallel Representations -- 2.6.2 Network Representations -- References -- Chapter 3 Printed Inductors -- 3.1 Inductors on Si Substrate -- 3.1.1 Conductor Loss -- 3.1.2 Substrate Loss -- 3.1.3 Layout Considerations -- 3.1.4 Inductor Model -- 3.1.5 Q-Enhancement Techniques -- 3.1.6 Stacked-Coil Inductor -- 3.1.7 Temperature Dependence -- 3.2 Inductors on GaAs Substrate -- 3.2.1 Inductor Models -- 3.2.2 Figure of Merit -- 3.2.3 Comprehensive Inductor Data -- 3.2.4 Q-Enhancement Techniques -- 3.2.5 Compact Inductors -- 3.2.6 High Current Handling Capability Inductors -- 3.3 Printed Circuit Board Inductors -- 3.4 Hybrid Integrated Circuit Inductors -- 3.4.1 Thin-Film Inductors -- 3.4.2 Thick-Film Inductors.
3.4.3 LTCC Inductors -- 3.5 Ferromagnetic Inductors -- References -- Chapter 4 Wire Inductors -- 4.1 Wire-Wound Inductors -- 4.1.1 Analytical Expressions -- 4.1.2 Compact High-Frequency Inductors -- 4.2 Bond Wire Inductor -- 4.2.1 Single and Multiple Wires -- 4.2.2 Wire Near a Corner -- 4.2.3 Wire on a Substrate Backed by a Ground Plane -- 4.2.4 Wire Above a Substrate Backed by a Ground Plane -- 4.2.5 Curved Wire Connecting Substrates -- 4.2.6 Twisted Wire -- 4.2.7 Maximum Current Handling of Wires -- 4.3 Wire Models -- 4.3.1 Numerical Methods for Bond Wires -- 4.3.2 Measurement-Based Model for Air Core Inductors -- 4.3.3 Measurement-Based Model for Bond Wires -- 4.4 Broadband Inductors -- 4.5 Magnetic Materials -- References -- Chapter 5 Capacitors -- 5.1 Introduction -- 5.2 Capacitor Parameters -- 5.2.1 Capacitor Value -- 5.2.2 Effective Capacitance -- 5.2.3 Tolerances -- 5.2.4 Temperature Coefficient -- 5.2.5 Quality Factor -- 5.2.6 Equivalent Series Resistance -- 5.2.7 Series and Parallel Resonances -- 5.2.8 Dissipation Factor or Loss Tangent -- 5.2.9 Time Constant -- 5.2.10 Rated Voltage -- 5.2.11 Rated Current -- 5.3 Chip Capacitor Types -- 5.3.1 Multilayer Dielectric Capacitor -- 5.3.2 Multiplate Capacitor -- 5.4 Discrete Parallel Plate Capacitor Analysis -- 5.4.1 Vertically Mounted Series Capacitor -- 5.4.2 Flat-Mounted Series Capacitor -- 5.4.3 Flat-Mounted Shunt Capacitor -- 5.4.4 Measurement-Based Model -- 5.5 Voltage and Current Ratings -- 5.5.1 Maximum Voltage Rating -- 5.5.2 Maximum RF Current Rating -- 5.5.3 Maximum Power Dissipation -- 5.6 Capacitor Electrical Representation -- 5.6.1 Series and Shunt Connections -- 5.6.2 Network Representations -- References -- Chapter 6 Monolithic Capacitors -- 6.1 MIM Capacitor Models -- 6.1.1 Simple Lumped Equivalent Circuit -- 6.1.2 Single Microstrip-Based Distributed Model.
6.1.3 EC Model for MIM Capacitor on Si -- 6.1.4 EM Simulations of Capacitors -- 6.2 High-Density Capacitors -- 6.2.1 Multilayer Capacitors -- 6.2.2 Ultra-Thin-Film Capacitors -- 6.2.3 High-K Capacitors -- 6.2.4 Fractal Capacitors -- 6.2.5 Ferroelectric Capacitors -- 6.3 Capacitor Shapes -- 6.3.1 Rectangular Capacitors -- 6.3.2 Circular Capacitors -- 6.3.3 Octagonal Capacitors -- 6.4 Design Considerations -- 6.4.1 Q-Enhancement Techniques -- 6.4.2 Tunable Capacitor -- 6.4.3 Maximum Power Handling -- References -- Chapter 7 Interdigital Capacitors -- 7.1 Interdigital Capacitor Models -- 7.1.1 Approximate Analysis -- 7.1.2 Full-Wave Analysis -- 7.1.3 Measurement-Based Model -- 7.2 Design Considerations -- 7.2.1 Compact Size -- 7.2.2 Multilayer Capacitor -- 7.2.3 Q-Enhancement Techniques -- 7.2.4 Voltage Tunable Capacitor -- 7.2.5 High-Voltage Operation -- 7.3 Interdigital Structure as a Photodetector -- References -- Chapter 8 Resistors -- 8.1 Introduction -- 8.2 Basic Definitions -- 8.2.1 Power Rating -- 8.2.2 Temperature Coefficient -- 8.2.3 Resistor Tolerances -- 8.2.4 Maximum Working Voltage -- 8.2.5 Maximum Frequency of Operation -- 8.2.6 Stability -- 8.2.7 Noise -- 8.2.8 Maximum Current Rating -- 8.3 Resistor Types -- 8.3.1 Chip Resistors -- 8.3.2 MCM Resistors -- 8.3.3 Monolithic Resistors -- 8.4 High-Power Resistors -- 8.5 Resistor Models -- 8.5.1 EC Model -- 8.5.2 Distributed Model -- 8.5.3 Meander Line Resistor -- 8.6 Resistor Representations -- 8.6.1 Network Representations -- 8.6.2 Electrical Representations -- 8.7 Effective Conductivity -- 8.8 Thermistors -- References -- Chapter 9 Via Holes -- 9.1 Types of Via Holes -- 9.1.1 Via Hole Connection -- 9.1.2 Via Hole Ground -- 9.2 Via Hole Models -- 9.2.1 Analytical Expression -- 9.2.2 Quasi-static Method -- 9.2.3 Parallel Plate Waveguide Model -- 9.2.4 Method of Momen.
9.2.5 Measurement-Based Model -- 9.3 Via Fence -- 9.3.1 Coupling Between Via Holes -- 9.3.2 Radiation from Via Ground Plug -- 9.4 Plated Heat Sink Via -- 9.5 Via Hole Layout -- 9.6 Silicon Vias -- References -- Chapter 10 Airbridges and Dielectric Crossovers -- 10.1 Airbridge and Crossov -- 10.2 Analysis Techniques -- 10.2.1 Quasi-static Method -- 10.2.2 Full-Wave Analysis -- 10.3 Models -- 10.3.1 Analytical Model -- 10.3.2 Measurement-Based Model -- References -- Chapter 11 Inductor Transformers and Baluns -- 11.1 Basic Theory -- 11.1.1 Parameters Definition -- 11.1.2 Analysis of Transformers -- 11.1.3 Ideal Transformers -- 11.1.4 Equivalent Circuit Representation -- 11.1.5 Equivalent Circuit of a Practical Transformer -- 11.1.6 Wideband Impedance Matching Transformers -- 11.1.7 Types of Transformers -- 11.2 Wire-Wrapped Transformers -- 11.2.1 Tapped Coil Transformers -- 11.2.2 Bond Wire Transformer -- 11.3 Transmission-Line Type Transformers -- 11.4 Parallel Conductor Winding Transformers on Si Substrate -- 11.5 Spiral Transformers on GaAs Substrate -- 11.6 Baluns -- 11.6.1 Lumped-Element LP/HP Filter Baluns -- 11.6.2 Lumped-Element Power Divider and 180◦ Hybrid Baluns -- 11.6.3 Coil Transformer Baluns -- 11.6.4 Transmission-Line Baluns -- 11.6.5 Marchand Baluns -- 11.6.6 Common-Mode Rejection Ratio -- References -- Chapter 12 Lumped-Element Passive Components -- 12.1 Impedance Matching Techniques -- 12.1.1 One-Port and Two-Port Networks -- 12.1.2 Lumped-Element Narrowband Matching Techniques -- 12.1.3 Lumped-Element Wideband Matching Techniques -- 12.2 90◦ Hybrids -- 12.2.1 Broadband 3-dB 90◦ Hybrid -- 12.2.2 Reconfigurable 3-dB 90◦ Hybrid -- 12.2.3 Dual-Band 3-dB 90◦ Hybrid -- 12.2.4 Differential 3-dB 90◦ Hybrid -- 12.3 180◦ Hybrids -- 12.3.1 Compact Lumped-Element 3-dB 180◦ Hybrid -- 12.3.2 Wideband Lumped-Element Differential 3-dB 180◦ Hybrids.
12.4 Directional Couplers -- 12.4.1 Transformer Directional Couplers -- 12.4.3 Differential Directional Couplers -- 12.4.4 Directional Coupler with Impedance Matching -- 12.5 Power Dividers/Combiners -- 12.5.1 Power Dividers with 90◦ and 180◦ Phase Difference -- 12.5.2 Broadband 2-Way and 4-Way Power Dividers -- 12.5.3 Compact 2-Way and 4-Way Power Dividers -- 12.5.4 Dual-Band Power Dividers -- 12.5.5 Differential Power Dividers -- 12.6 Filter -- 12.6.1 Ceramic Lumped-Element LTCC Bandpass Filters -- 12.6.2 Dual-Band Filters -- 12.6.3 Reconfigurable and Switchable Filters -- 12.6.4 High Selectivity Compact BPF -- 12.6.5 Differential-Mode and Common-Mode Rejection Filters -- 12.6.6 Tunable BPF with Constant Bandwidth -- 12.6.7 Compact Si Bandpass Filter -- 12.6.8 Compact CMOS Bandpass Filters -- 12.7 Biasing Networks -- 12.7.1 Biasing of Diodes and Control Components -- 12.7.2 Biasing of Active Circuits -- References -- Chapter 13 Lumped-Element Control Components -- 13.1 Switches -- 13.1.1 Switch Configurations -- 13.1.2 Broadband Switches -- 13.1.3 MESFET Switches -- 13.1.4 HEMT Switches -- 13.1.5 CMOS Switches -- 13.1.6 GaN HEMT Switches -- 13.1.7 Comparison of Switch Technologies -- 13.2 Phase Shifters -- 13.2.1 Types of Phase Shifters -- 13.2.2 Switched-Network Phase Shifters -- 13.2.3 Multibit Phase Shifter Circuits -- 13.2.4 MESFET/HEMT Multibit Phase Shifters -- 13.2.5 CMOS Phase Shifters -- 13.2.6 Analog Phase Shifters -- 13.2.7 Broadband Phase Shifters -- 13.2.8 Ultrawideband Phase Shifters -- 13.2.9 Millimeter-Wave Phase Shifters -- 13.2.10 Active Phase Shifters -- 13.3 Attenuators -- 13.3.1 Attenuator Configurations -- 13.3.2 Multibit Attenuators -- 13.3.3 GaAs MMIC Step Attenuators -- 13.3.4 Si CMOS Step Attenuators -- 13.3.5 Variable Voltage Attenuators -- 13.3.6 GaN HEMT Attenuator -- 13.3.7 Phase Compensated Attenuators.
13.3.8 CMOS Attenuator with Integrated Switch.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.