ORPP logo
Image from Google Jackets

Aircraft Flight Dynamics and Control.

By: Material type: TextTextSeries: New York Academy of Sciences SeriesPublisher: Newark : John Wiley & Sons, Incorporated, 2013Copyright date: ©2013Edition: 1st edDescription: 1 online resource (308 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118646793
Subject(s): Genre/Form: Additional physical formats: Print version:: Aircraft Flight Dynamics and ControlDDC classification:
  • 629.132/3
LOC classification:
  • TL570 .D867 2013
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- Series Preface -- Glossary -- Chapter 1 Introduction -- 1.1 Background -- 1.2 Overview -- 1.3 Customs and Conventions -- References -- Chapter 2 Coordinate Systems -- 2.1 Background -- 2.2 The Coordinate Systems -- 2.2.1 The inertial reference frame, FI -- 2.2.2 The earth-centered reference frame, FEC -- 2.2.3 The earth-fixed reference frame, FE -- 2.2.4 The local-horizontal reference frame, FH -- 2.2.5 Body-fixed reference frames, FB -- 2.2.6 Wind-axis system, FW -- 2.2.7 Atmospheric reference frame -- 2.3 Vector Notation -- 2.4 Customs and Conventions -- 2.4.1 Latitude and longitude -- 2.4.2 Body axes -- 2.4.3 `The' body-axis system -- 2.4.4 Aerodynamic angles -- Problems -- References -- Chapter 3 Coordinate System Transformations -- 3.1 Problem Statement -- 3.2 Transformations -- 3.2.1 Definitions -- 3.2.2 Direction cosines -- 3.2.3 Euler angles -- 3.2.4 Euler parameters -- 3.3 Transformations of Systems of Equations -- 3.4 Customs and Conventions -- 3.4.1 Names of Euler angles -- 3.4.2 Principal values of Euler angles -- Problems -- Reference -- Chapter 4 Rotating Coordinate Systems -- 4.1 General -- 4.2 Direction Cosines -- 4.3 Euler Angles -- 4.4 Euler Parameters -- 4.5 Customs and Conventions -- 4.5.1 Angular velocity components -- Problems -- Chapter 5 Inertial Accelerations -- 5.1 General -- 5.2 Inertial Acceleration of a Point -- 5.2.1 Arbitrary moving reference frame -- 5.2.2 Earth-centered moving reference frame -- 5.2.3 Earth-fixed moving reference frame -- 5.3 Inertial Acceleration of a Mass -- 5.3.1 Linear acceleration -- 5.3.2 Rotational acceleration -- 5.4 States -- 5.5 Customs and Conventions -- 5.5.1 Linear velocity components -- 5.5.2 Angular velocity components -- 5.5.3 Forces -- 5.5.4 Moments -- 5.5.5 Groupings -- Problems -- Chapter 6 Forces and Moments -- 6.1 General.
6.1.1 Assumptions -- 6.1.2 State variables -- 6.1.3 State rates -- 6.1.4 Flight controls -- 6.1.5 Independent variables -- 6.2 Non-Dimensionalization -- 6.3 Non-Dimensional Coefficient Dependencies -- 6.3.1 General -- 6.3.2 Altitude dependencies -- 6.3.3 Velocity dependencies -- 6.3.4 Angle-of-attack dependencies -- 6.3.5 Sideslip dependencies -- 6.3.6 Angular velocity dependencies -- 6.3.7 Control dependencies -- 6.3.8 Summary of dependencies -- 6.4 The Linear Assumption -- 6.5 Tabular Data -- 6.6 Customs and Conventions -- Problems -- Chapter 7 Equations of Motion -- 7.1 General -- 7.2 Body-Axis Equations -- 7.2.1 Body-axis force equations -- 7.2.2 Body-axis moment equations -- 7.2.3 Body-axis orientation equations (kinematic equations) -- 7.2.4 Body-axis navigation equations -- 7.3 Wind-Axis Equations -- 7.3.1 Wind-axis force equations -- 7.3.2 Wind-axis orientation equations (kinematic equations) -- 7.3.3 Wind-axis navigation equations -- 7.4 Steady-State Solutions -- 7.4.1 General -- 7.4.2 Special cases -- 7.4.3 The trim problem -- Problems -- Reference -- Chapter 8 Linearization -- 8.1 General -- 8.2 Taylor Series -- 8.3 Nonlinear Ordinary Differential Equations -- 8.4 Systems of Equations -- 8.5 Examples -- 8.5.1 General -- 8.5.2 A kinematic equation -- 8.5.3 A moment equation -- 8.5.4 A force equation -- 8.6 Customs and Conventions -- 8.6.1 Omission of -- 8.6.2 Dimensional derivatives -- 8.6.3 Added mass -- 8.7 The Linear Equations -- 8.7.1 Linear equations -- 8.7.2 Matrix forms of the linear equations -- Problems -- References -- Chapter 9 Solutions to the Linear Equations -- 9.1 Scalar Equations -- 9.2 Matrix Equations -- 9.3 Initial Condition Response -- 9.3.1 Modal analysis -- 9.4 Mode Sensitivity and Approximations -- 9.4.1 Mode sensitivity -- 9.4.2 Approximations -- 9.5 Forced Response -- 9.5.1 Transfer functions.
9.5.2 Steady-state response -- Problems -- Chapter 10 Aircraft Flight Dynamics -- 10.1 Example: Longitudinal Dynamics -- 10.1.1 System matrices -- 10.1.2 State transition matrix and eigenvalues -- 10.1.3 Eigenvector analysis -- 10.1.4 Longitudinal mode sensitivity and approximations -- 10.1.5 Forced response -- 10.2 Example: Lateral-Directional Dynamics -- 10.2.1 System matrices -- 10.2.2 State transition matrix and eigenvalues -- 10.2.3 Eigenvector analysis -- 10.2.4 Lateral-directional mode sensitivity and approximations -- 10.2.5 Forced response -- Problems -- References -- Chapter 11 Flying Qualities -- 11.1 General -- 11.1.1 Method -- 11.1.2 Specifications and standards -- 11.2 MIL-F-8785C Requirements -- 11.2.1 General -- 11.2.2 Longitudinal flying qualities -- 11.2.3 Lateral-directional flying qualitities -- Problems -- References -- Chapter 12 Automatic Flight Control -- 12.1 Simple Feedback Systems -- 12.1.1 First-order systems -- 12.1.2 Second-order systems -- 12.1.3 A general representation -- 12.2 Example Feedback Control Applications -- 12.2.1 Roll mode -- 12.2.2 Short-period mode -- 12.2.3 Phugoid -- 12.2.4 Coupled roll-spiral oscillation -- Problems -- References -- Chapter 13 Trends in Automatic Flight Control -- 13.1 Overview -- 13.2 Dynamic Inversion -- 13.2.1 The controlled equations -- 13.2.2 The kinematic equations -- 13.2.3 The complementary equations -- 13.3 Control Allocation -- 13.3.1 Background -- 13.3.2 Problem statement -- 13.3.3 Optimality -- 13.3.4 Sub-optimal solutions -- 13.3.5 Optimal solutions -- 13.3.6 Near-optimal solutions -- Problems -- References -- Appendix A Example Aircraft -- Reference -- Appendix B Linearization -- B.1 Derivation of Frequently Used Derivatives -- B.2 Non-dimensionalization of the Rolling Moment Equation -- B.3 Body Axis Z-Force and Thrust Derivatives.
B.4 Non-dimensionalization of the Z-Force Equation -- Appendix C Derivation of Euler Parameters -- Appendix D Fedeeva's Algorithm -- Reference -- Appendix E MATLAB® Commands Used in the Text -- E.1 Using MATLAB® -- E.2 Eigenvalues and Eigenvectors -- E.3 State-Space Representation -- E.4 Transfer Function Representation -- E.5 Root Locus -- E.6 MATLAB® Functions (m-files) -- E.6.1 Example aircraft -- E.6.2 Mode sensitivity matrix -- E.6.3 Cut-and-try root locus gains -- E.7 Miscellaneous Applications and Notes -- E.7.1 Matrices -- E.7.2 Commands used to create Figures 10.2 and 10.3 -- Index.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- Series Preface -- Glossary -- Chapter 1 Introduction -- 1.1 Background -- 1.2 Overview -- 1.3 Customs and Conventions -- References -- Chapter 2 Coordinate Systems -- 2.1 Background -- 2.2 The Coordinate Systems -- 2.2.1 The inertial reference frame, FI -- 2.2.2 The earth-centered reference frame, FEC -- 2.2.3 The earth-fixed reference frame, FE -- 2.2.4 The local-horizontal reference frame, FH -- 2.2.5 Body-fixed reference frames, FB -- 2.2.6 Wind-axis system, FW -- 2.2.7 Atmospheric reference frame -- 2.3 Vector Notation -- 2.4 Customs and Conventions -- 2.4.1 Latitude and longitude -- 2.4.2 Body axes -- 2.4.3 `The' body-axis system -- 2.4.4 Aerodynamic angles -- Problems -- References -- Chapter 3 Coordinate System Transformations -- 3.1 Problem Statement -- 3.2 Transformations -- 3.2.1 Definitions -- 3.2.2 Direction cosines -- 3.2.3 Euler angles -- 3.2.4 Euler parameters -- 3.3 Transformations of Systems of Equations -- 3.4 Customs and Conventions -- 3.4.1 Names of Euler angles -- 3.4.2 Principal values of Euler angles -- Problems -- Reference -- Chapter 4 Rotating Coordinate Systems -- 4.1 General -- 4.2 Direction Cosines -- 4.3 Euler Angles -- 4.4 Euler Parameters -- 4.5 Customs and Conventions -- 4.5.1 Angular velocity components -- Problems -- Chapter 5 Inertial Accelerations -- 5.1 General -- 5.2 Inertial Acceleration of a Point -- 5.2.1 Arbitrary moving reference frame -- 5.2.2 Earth-centered moving reference frame -- 5.2.3 Earth-fixed moving reference frame -- 5.3 Inertial Acceleration of a Mass -- 5.3.1 Linear acceleration -- 5.3.2 Rotational acceleration -- 5.4 States -- 5.5 Customs and Conventions -- 5.5.1 Linear velocity components -- 5.5.2 Angular velocity components -- 5.5.3 Forces -- 5.5.4 Moments -- 5.5.5 Groupings -- Problems -- Chapter 6 Forces and Moments -- 6.1 General.

6.1.1 Assumptions -- 6.1.2 State variables -- 6.1.3 State rates -- 6.1.4 Flight controls -- 6.1.5 Independent variables -- 6.2 Non-Dimensionalization -- 6.3 Non-Dimensional Coefficient Dependencies -- 6.3.1 General -- 6.3.2 Altitude dependencies -- 6.3.3 Velocity dependencies -- 6.3.4 Angle-of-attack dependencies -- 6.3.5 Sideslip dependencies -- 6.3.6 Angular velocity dependencies -- 6.3.7 Control dependencies -- 6.3.8 Summary of dependencies -- 6.4 The Linear Assumption -- 6.5 Tabular Data -- 6.6 Customs and Conventions -- Problems -- Chapter 7 Equations of Motion -- 7.1 General -- 7.2 Body-Axis Equations -- 7.2.1 Body-axis force equations -- 7.2.2 Body-axis moment equations -- 7.2.3 Body-axis orientation equations (kinematic equations) -- 7.2.4 Body-axis navigation equations -- 7.3 Wind-Axis Equations -- 7.3.1 Wind-axis force equations -- 7.3.2 Wind-axis orientation equations (kinematic equations) -- 7.3.3 Wind-axis navigation equations -- 7.4 Steady-State Solutions -- 7.4.1 General -- 7.4.2 Special cases -- 7.4.3 The trim problem -- Problems -- Reference -- Chapter 8 Linearization -- 8.1 General -- 8.2 Taylor Series -- 8.3 Nonlinear Ordinary Differential Equations -- 8.4 Systems of Equations -- 8.5 Examples -- 8.5.1 General -- 8.5.2 A kinematic equation -- 8.5.3 A moment equation -- 8.5.4 A force equation -- 8.6 Customs and Conventions -- 8.6.1 Omission of -- 8.6.2 Dimensional derivatives -- 8.6.3 Added mass -- 8.7 The Linear Equations -- 8.7.1 Linear equations -- 8.7.2 Matrix forms of the linear equations -- Problems -- References -- Chapter 9 Solutions to the Linear Equations -- 9.1 Scalar Equations -- 9.2 Matrix Equations -- 9.3 Initial Condition Response -- 9.3.1 Modal analysis -- 9.4 Mode Sensitivity and Approximations -- 9.4.1 Mode sensitivity -- 9.4.2 Approximations -- 9.5 Forced Response -- 9.5.1 Transfer functions.

9.5.2 Steady-state response -- Problems -- Chapter 10 Aircraft Flight Dynamics -- 10.1 Example: Longitudinal Dynamics -- 10.1.1 System matrices -- 10.1.2 State transition matrix and eigenvalues -- 10.1.3 Eigenvector analysis -- 10.1.4 Longitudinal mode sensitivity and approximations -- 10.1.5 Forced response -- 10.2 Example: Lateral-Directional Dynamics -- 10.2.1 System matrices -- 10.2.2 State transition matrix and eigenvalues -- 10.2.3 Eigenvector analysis -- 10.2.4 Lateral-directional mode sensitivity and approximations -- 10.2.5 Forced response -- Problems -- References -- Chapter 11 Flying Qualities -- 11.1 General -- 11.1.1 Method -- 11.1.2 Specifications and standards -- 11.2 MIL-F-8785C Requirements -- 11.2.1 General -- 11.2.2 Longitudinal flying qualities -- 11.2.3 Lateral-directional flying qualitities -- Problems -- References -- Chapter 12 Automatic Flight Control -- 12.1 Simple Feedback Systems -- 12.1.1 First-order systems -- 12.1.2 Second-order systems -- 12.1.3 A general representation -- 12.2 Example Feedback Control Applications -- 12.2.1 Roll mode -- 12.2.2 Short-period mode -- 12.2.3 Phugoid -- 12.2.4 Coupled roll-spiral oscillation -- Problems -- References -- Chapter 13 Trends in Automatic Flight Control -- 13.1 Overview -- 13.2 Dynamic Inversion -- 13.2.1 The controlled equations -- 13.2.2 The kinematic equations -- 13.2.3 The complementary equations -- 13.3 Control Allocation -- 13.3.1 Background -- 13.3.2 Problem statement -- 13.3.3 Optimality -- 13.3.4 Sub-optimal solutions -- 13.3.5 Optimal solutions -- 13.3.6 Near-optimal solutions -- Problems -- References -- Appendix A Example Aircraft -- Reference -- Appendix B Linearization -- B.1 Derivation of Frequently Used Derivatives -- B.2 Non-dimensionalization of the Rolling Moment Equation -- B.3 Body Axis Z-Force and Thrust Derivatives.

B.4 Non-dimensionalization of the Z-Force Equation -- Appendix C Derivation of Euler Parameters -- Appendix D Fedeeva's Algorithm -- Reference -- Appendix E MATLAB® Commands Used in the Text -- E.1 Using MATLAB® -- E.2 Eigenvalues and Eigenvectors -- E.3 State-Space Representation -- E.4 Transfer Function Representation -- E.5 Root Locus -- E.6 MATLAB® Functions (m-files) -- E.6.1 Example aircraft -- E.6.2 Mode sensitivity matrix -- E.6.3 Cut-and-try root locus gains -- E.7 Miscellaneous Applications and Notes -- E.7.1 Matrices -- E.7.2 Commands used to create Figures 10.2 and 10.3 -- Index.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.