ORPP logo
Image from Google Jackets

Organic Electronics 2 : Applications and Marketing.

By: Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2021Copyright date: ©2021Edition: 1st edDescription: 1 online resource (224 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119854876
Subject(s): Genre/Form: Additional physical formats: Print version:: Organic Electronics 2DDC classification:
  • 621.381
LOC classification:
  • TK7871.15.P6 N489 2021
Online resources:
Contents:
Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Introduction -- 1. Organic Light-Emitting Diodes -- 1.1. Introduction -- 1.2. Reminders on optics -- 1.2.1. Photometry and radiometry -- 1.2.2. Colors -- 1.3. OLED operating principle -- 1.3.1. P-N junction LED -- 1.3.2. OLEDs -- 1.4. OLED applications -- 1.4.1. OLEDs for lighting -- 1.4.2. OLEDs for display -- 1.4.3. OLEDs for automotive equipment -- 1.5. Conclusion -- 2. Organic Solar Cells -- 2.1. Introduction -- 2.2. Solar spectrum -- 2.3. Operating principle -- 2.3.1. Absorption of photons -- 2.3.2. Diffusion of excitons -- 2.3.3. Dissociation of excitons -- 2.3.4. Diffusion of carriers to electrodes -- 2.3.5. Collection of charges -- 2.3.6. Process optimization for an organic solar cell -- 2.4. Characteristic parameters of solar cells -- 2.4.1. Current-voltage characteristics -- 2.4.2. Photovoltaic parameters of a solar cell -- 2.4.3. Efficiency -- 2.5. Organic materials -- 2.5.1. Electron donor materials -- 2.5.2. Electron acceptor materials -- 2.6. P3HT:PCBM -- 2.7. Perovskite -- 2.7.1. Structure of perovskite -- 2.7.2. Solar cells based on perovskite -- 2.7.3. Conversion efficiency -- 2.7.4. Problems with the use of perovskite solar cells -- 2.8. Solar cells based on organic, hybrid and silicon materials -- 2.9. Strategies to improve the performance of organic and hybrid solar cells -- 2.9.1. Low bandgap semiconductors -- 2.9.2. Tandem cells -- 2.10. Conclusion -- 3. Organic Transistors -- 3.1. Introduction -- 3.2. Operating principle -- 3.2.1. Transistor effect -- 3.2.2. Field effect -- 3.3. Principal OFET parameters -- 3.3.1. Charge carrier mobility -- 3.3.2. Contact resistance -- 3.3.3. Hysteresis -- 3.3.4. Gate-bias stress effects, VGS -- 3.3.5. Ion/Ioff current ratio -- 3.4. Materials -- 3.4.1. Metals used for electrodes -- 3.4.2. Dielectric materials.
3.4.3. Active organic materials -- 3.5. Ambipolar transistors and semiconductors -- 3.5.1. Ambipolar semiconductors -- 3.5.2. Ambipolar transistors -- 3.6. Light-emitting transistors -- 3.6.1. Ambipolar OLETs with BHJ structure -- 3.6.2. Single-semiconductor ambipolar OLETs -- 3.6.3. Vertical OLETs -- 3.7. OFET applications -- 3.7.1. RFID tags -- 3.7.2. Sensors -- 3.7.3. Active-matrix displays -- 3.8. Conclusion -- 4. The Brabec Triangle -- 4.1. Introduction -- 4.2. Device efficiency -- 4.2.1. OLED efficiency -- 4.2.2. Solar cell efficiency -- 4.2.3. OFET performance -- 4.3. Stability of materials and devices -- 4.3.1. Process of degradation of organic materials and devices -- 4.3.2. Classification of device degradation mechanisms -- 4.3.3. Degradation of OFETs -- 4.3.4. Measuring the lifetime of devices -- 4.4. Organic device production cost and marketing -- 4.4.1. Production of OLEDs -- 4.4.2. Production of OSCs -- 4.4.3. Production of OFETs -- 4.5. Synthesis on Brabec's criteria -- 4.6. Environmental dimension -- 4.6.1. Life-cycle assessment -- 4.6.2. Levelized cost of energy -- 4.6.3. Energy payback time -- 4.6.4. Life cycle of organic solar cells -- 4.6.5. Fate of released pollutants -- 4.6.6. Mass production and environment -- 4.7. Prospects and developments -- List of Acronyms -- General terms -- Materials -- References -- Index -- Other titles from iSTE in Electronics Engineering -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Introduction -- 1. Organic Light-Emitting Diodes -- 1.1. Introduction -- 1.2. Reminders on optics -- 1.2.1. Photometry and radiometry -- 1.2.2. Colors -- 1.3. OLED operating principle -- 1.3.1. P-N junction LED -- 1.3.2. OLEDs -- 1.4. OLED applications -- 1.4.1. OLEDs for lighting -- 1.4.2. OLEDs for display -- 1.4.3. OLEDs for automotive equipment -- 1.5. Conclusion -- 2. Organic Solar Cells -- 2.1. Introduction -- 2.2. Solar spectrum -- 2.3. Operating principle -- 2.3.1. Absorption of photons -- 2.3.2. Diffusion of excitons -- 2.3.3. Dissociation of excitons -- 2.3.4. Diffusion of carriers to electrodes -- 2.3.5. Collection of charges -- 2.3.6. Process optimization for an organic solar cell -- 2.4. Characteristic parameters of solar cells -- 2.4.1. Current-voltage characteristics -- 2.4.2. Photovoltaic parameters of a solar cell -- 2.4.3. Efficiency -- 2.5. Organic materials -- 2.5.1. Electron donor materials -- 2.5.2. Electron acceptor materials -- 2.6. P3HT:PCBM -- 2.7. Perovskite -- 2.7.1. Structure of perovskite -- 2.7.2. Solar cells based on perovskite -- 2.7.3. Conversion efficiency -- 2.7.4. Problems with the use of perovskite solar cells -- 2.8. Solar cells based on organic, hybrid and silicon materials -- 2.9. Strategies to improve the performance of organic and hybrid solar cells -- 2.9.1. Low bandgap semiconductors -- 2.9.2. Tandem cells -- 2.10. Conclusion -- 3. Organic Transistors -- 3.1. Introduction -- 3.2. Operating principle -- 3.2.1. Transistor effect -- 3.2.2. Field effect -- 3.3. Principal OFET parameters -- 3.3.1. Charge carrier mobility -- 3.3.2. Contact resistance -- 3.3.3. Hysteresis -- 3.3.4. Gate-bias stress effects, VGS -- 3.3.5. Ion/Ioff current ratio -- 3.4. Materials -- 3.4.1. Metals used for electrodes -- 3.4.2. Dielectric materials.

3.4.3. Active organic materials -- 3.5. Ambipolar transistors and semiconductors -- 3.5.1. Ambipolar semiconductors -- 3.5.2. Ambipolar transistors -- 3.6. Light-emitting transistors -- 3.6.1. Ambipolar OLETs with BHJ structure -- 3.6.2. Single-semiconductor ambipolar OLETs -- 3.6.3. Vertical OLETs -- 3.7. OFET applications -- 3.7.1. RFID tags -- 3.7.2. Sensors -- 3.7.3. Active-matrix displays -- 3.8. Conclusion -- 4. The Brabec Triangle -- 4.1. Introduction -- 4.2. Device efficiency -- 4.2.1. OLED efficiency -- 4.2.2. Solar cell efficiency -- 4.2.3. OFET performance -- 4.3. Stability of materials and devices -- 4.3.1. Process of degradation of organic materials and devices -- 4.3.2. Classification of device degradation mechanisms -- 4.3.3. Degradation of OFETs -- 4.3.4. Measuring the lifetime of devices -- 4.4. Organic device production cost and marketing -- 4.4.1. Production of OLEDs -- 4.4.2. Production of OSCs -- 4.4.3. Production of OFETs -- 4.5. Synthesis on Brabec's criteria -- 4.6. Environmental dimension -- 4.6.1. Life-cycle assessment -- 4.6.2. Levelized cost of energy -- 4.6.3. Energy payback time -- 4.6.4. Life cycle of organic solar cells -- 4.6.5. Fate of released pollutants -- 4.6.6. Mass production and environment -- 4.7. Prospects and developments -- List of Acronyms -- General terms -- Materials -- References -- Index -- Other titles from iSTE in Electronics Engineering -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.