ORPP logo
Image from Google Jackets

Smart Grid Communication Infrastructures : Big Data, Cloud Computing, and Security.

By: Contributor(s): Material type: TextTextSeries: IEEE Press SeriesPublisher: Newark : John Wiley & Sons, Incorporated, 2018Copyright date: ©2020Edition: 1st edDescription: 1 online resource (307 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119240181
Subject(s): Genre/Form: Additional physical formats: Print version:: Smart Grid Communication InfrastructuresDDC classification:
  • 621.31
LOC classification:
  • TK3105 .Y4 2018
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- Chapter 1 Background of the Smart Grid -- 1.1 Motivations and Objectives of the Smart Grid -- 1.1.1 Better Renewable Energy Resource Adaption -- 1.1.2 Grid Operation Efficiency Advancement -- 1.1.3 Grid Reliability and Security Improvement -- 1.2 Smart Grid Communications Architecture -- 1.2.1 Conceptual Domain Model -- 1.2.2 Two‐Way Communications Network -- 1.3 Applications and Requirements -- 1.3.1 Demand Response -- 1.3.2 Advanced Metering Infrastructure -- 1.3.3 Wide‐Area Situational Awareness and Wide‐Area Monitoring Systems -- 1.3.4 Communication Networks and Cybersecurity -- 1.4 The Rest of the Book -- Chapter 2 Smart Grid Communication Infrastructures -- 2.1 An ICT Framework for the Smart Grid -- 2.1.1 Roles and Benefits of an ICT Framework -- 2.1.2 An Overview of the Proposed ICT Framework -- 2.2 Entities in the ICT Framework -- 2.2.1 Internal Data Collectors -- 2.2.2 Control Centers -- 2.2.3 Power Generators -- 2.2.4 External Data Sources -- 2.3 Communication Networks and Technologies -- 2.3.1 Private and Public Networks -- 2.3.2 Communication Technologies -- 2.4 Data Communication Requirements -- 2.4.1 Latency and Bandwidth -- 2.4.2 Interoperability -- 2.4.3 Scalability -- 2.4.4 Security -- 2.5 Summary -- Chapter 3 Self‐Sustaining Wireless Neighborhood‐Area Network Design -- 3.1 Overview of the Proposed NAN -- 3.1.1 Background and Motivation of a Self‐Sustaining Wireless NAN -- 3.1.2 Structure of the Proposed NAN -- 3.2 Preliminaries -- 3.2.1 Charging Rate Estimate -- 3.2.2 Battery‐Related Issues -- 3.2.3 Path Loss Model -- 3.3 Problem Formulations and Solutions in the NAN Design -- 3.3.1 The Cost Minimization Problem -- 3.3.2 Optimal Number of Gateways -- 3.3.3 Geographical Deployment Problem for Gateway DAPs -- 3.3.4 Global Uplink Transmission Power Efficiency -- 3.4 Numerical Results.
3.4.1 Evaluation of the Optimal Number of Gateways -- 3.4.2 Evaluation of the Global Power Efficiency -- 3.4.3 Evaluation of the Global Uplink Transmission Rates -- 3.4.4 Evaluation of the Global Power Consumption -- 3.4.5 Evaluation of the Minimum Cost Problem -- 3.5 Case Study -- 3.6 Summary -- Chapter 4 Reliable Energy‐Efficient Uplink Transmission Power Control Scheme in NAN -- 4.1 Background and Related Work -- 4.1.1 Motivations and Background -- 4.1.2 Related Work -- 4.2 System Model -- 4.3 Preliminaries -- 4.3.1 Mathematical Formulation -- 4.3.2 Energy Efficiency Utility Function -- 4.4 Hierarchical Uplink Transmission Power Control Scheme -- 4.4.1 DGD Level Game -- 4.4.2 BGD Level Game -- 4.5 Analysis of the Proposed Schemes -- 4.5.1 Estimation of B and D -- 4.5.2 Analysis of the Proposed Stackelberg Game -- 4.5.3 Algorithms to Approach NE and SE -- 4.6 Numerical Results -- 4.6.1 Simulation Settings -- 4.6.2 Estimate of D and B -- 4.6.3 Data Rate Reliability Evaluation -- 4.6.4 Evaluation of the Proposed Algorithms to Achieve NE and SE -- 4.7 Summary -- Chapter 5 Design and Analysis of a Wireless Monitoring Network for Transmission Lines in the Smart Grid -- 5.1 Background and Related Work -- 5.1.1 Background and Motivation -- 5.1.2 Related Work -- 5.2 Network Model -- 5.3 Problem Formulation -- 5.4 Proposed Power Allocation Schemes -- 5.4.1 Minimizing Total Power Usage -- 5.4.2 Maximizing Power Efficiency -- 5.4.3 Uniform Delay -- 5.4.4 Uniform Transmission Rate -- 5.5 Distributed Power Allocation Schemes -- 5.6 Numerical Results and A Case Study -- 5.6.1 Simulation Settings -- 5.6.2 Comparison of the Centralized Schemes -- 5.6.3 Case Study -- 5.7 Summary -- Chapter 6 A Real‐Time Information‐Based Demand‐Side Management System -- 6.1 Background and Related Work -- 6.1.1 Background -- 6.1.2 Related Work -- 6.2 System Model.
6.2.1 The Demand‐Side Power Management System -- 6.2.2 Mathematical Modeling -- 6.2.3 Energy Cost and Unit Price -- 6.3 Centralized DR Approaches -- 6.3.1 Minimize Peak‐to‐Average Ratio -- 6.3.2 Minimize Total Cost of Power Generation -- 6.4 Game Theoretical Approaches -- 6.4.1 Formulated Game -- 6.4.2 Game Theoretical Approach 1: Locally Computed Smart Pricing -- 6.4.3 Game Theoretical Approach 2: Semifixed Smart Pricing -- 6.4.4 Mixed Approach: Mixed GA1 and GA2 -- 6.5 Precision and Truthfulness of the Proposed DR System -- 6.6 Numerical and Simulation Results -- 6.6.1 Settings -- 6.6.2 Comparison of P1, P2 and GA1 -- 6.6.3 Comparison of Different Distributed Approaches -- 6.6.4 The Impact from Energy Storage Unit -- 6.6.5 The Impact from Increasing Renewable Energy -- 6.7 Summary -- Chapter 7 Intelligent Charging for Electric Vehicles-Scheduling in Battery Exchanges Stations -- 7.1 Background and Related Work -- 7.1.1 Background and Overview -- 7.1.2 Related Work -- 7.2 System Model -- 7.2.1 Overview of the Studied System -- 7.2.2 Mathematical Formulation -- 7.2.3 Customer Estimation -- 7.3 Load Scheduling Schemes for BESs -- 7.3.1 Constraints for a BES si -- 7.3.2 Minimizing PAR: Problem Formulation and Analysis -- 7.3.3 Problem Formulation and Analysis for Minimizing Costs -- 7.3.4 Game Theoretical Approach -- 7.4 Simulation Analysis and Results -- 7.4.1 Settings for the Simulations -- 7.4.2 Impact of the Proposed DSM on PAR -- 7.4.3 Evaluation of BESs Equipment Settings -- 7.4.3.1 Number of Charging Ports -- 7.4.3.2 Maximum Number of Fully Charged Batteries -- 7.4.3.3 Preparation at the Beginning of Each Day -- 7.4.3.4 Impact on PAR from BESs -- 7.4.4 Evaluations of the Game Theoretical Approach -- 7.5 Summary -- Chapter 8 Big Data Analytics and Cloud Computing in the Smart Grid -- 8.1 Background and Motivation -- 8.1.1 Big Data Era.
8.1.2 The Smart Grid and Big Data -- 8.2 Pricing and Energy Forecasts in Demand Response -- 8.2.1 An Overview of Pricing and Energy Forecasts -- 8.2.2 A Case Study of Energy Forecasts -- 8.3 Attack Detection -- 8.3.1 An Overview of Attack Detection in the Smart Grid -- 8.3.2 Current Problems and Techniques -- 8.4 Cloud Computing in the Smart Grid -- 8.4.1 Basics of Cloud Computing -- 8.4.2 Advantages of Cloud Computing in the Smart Grid -- 8.4.3 A Cloud Computing Architecture for the Smart Grid -- 8.5 Summary -- Chapter 9 A Secure Data Learning Scheme for Big Data Applications in the Smart Grid -- 9.1 Background and Related Work -- 9.1.1 Motivation and Background -- 9.1.2 Related Work -- 9.2 Preliminaries -- 9.2.1 Classic Centralized Learning Scheme -- 9.2.2 Supervised Learning Models -- 9.2.2.1 Supervised Regression Learning Model -- 9.2.2.2 Regularization Term -- 9.2.3 Security Model -- 9.3 Secure Data Learning Scheme -- 9.3.1 Data Learning Scheme -- 9.3.2 The Proposed Security Scheme -- 9.3.2.1 Privacy Scheme -- 9.3.2.2 Identity Protection -- 9.3.3 Analysis of the Learning Process -- 9.3.4 Analysis of the Security -- 9.4 Smart Metering Data Set Analysis-A Case Study -- 9.4.1 Smart Grid AMI and Metering Data Set -- 9.4.2 Regression Study -- 9.5 Conclusion and Future Work -- Chapter 10 Security Challenges in the Smart Grid Communication Infrastructure -- 10.1 General Security Challenges -- 10.1.1 Technical Requirements -- 10.1.2 Information Security Domains -- 10.1.3 Standards and Interoperability -- 10.2 Logical Security Architecture -- 10.2.1 Key Concepts and Assumptions -- 10.2.2 Logical Interface Categories -- 10.3 Network Security Requirements -- 10.3.1 Utility‐Owned Private Networks -- 10.3.2 Public Networks in the Smart Grid -- 10.4 Classification of Attacks -- 10.4.1 Component‐Based Attacks -- 10.4.2 Protocol‐Based Attacks.
10.5 Existing Security Solutions -- 10.6 Standardization and Regulation -- 10.6.1 Commissions and Considerations -- 10.6.2 Selected Standards -- 10.7 Summary -- Chapter 11 Security Schemes for AMI Private Networks -- 11.1 Preliminaries -- 11.1.1 Security Services -- 11.1.2 Security Mechanisms -- 11.1.3 Notations of the Keys Used in This Chapter -- 11.2 Initial Authentication -- 11.2.1 An Overview of the Proposed Authentication Process -- 11.2.1.1 DAP Authentication Process -- 11.2.1.2 Smart Meter Authentication Process -- 11.2.2 The Authentication Handshake Protocol -- 11.2.3 Security Analysis -- 11.3 Proposed Security Protocol in Uplink Transmissions -- 11.3.1 Single‐Traffic Uplink Encryption -- 11.3.2 Multiple‐Traffic Uplink Encryption -- 11.3.3 Decryption Process in Uplink Transmissions -- 11.3.4 Security Analysis -- 11.4 Proposed Security Protocol in Downlink Transmissions -- 11.4.1 Broadcast Control Message Encryption -- 11.4.2 One‐to‐One Control Message Encryption -- 11.4.3 Security Analysis -- 11.5 Domain Secrets Update -- 11.5.1 AS Public/Private Keys Update -- 11.5.2 Active Secret Key Update -- 11.5.3 Preshared Secret Key Update -- 11.6 Summary -- Chapter 12 Security Schemes for Smart Grid Communications over Public Networks -- 12.1 Overview of the Proposed Security Schemes -- 12.1.1 Background and Motivation -- 12.1.2 Applications of the Proposed Security Schemes in the Smart Grid -- 12.2 Proposed ID‐Based Scheme -- 12.2.1 Preliminaries -- 12.2.2 Identity‐Based Signcryption -- 12.2.2.1 Setup -- 12.2.2.2 Keygen -- 12.2.2.3 Signcryption -- 12.2.2.4 Decryption -- 12.2.2.5 Verification -- 12.2.3 Consistency of the Proposed IBSC Scheme -- 12.2.4 Identity‐Based Signature -- 12.2.4.1 Signature -- 12.2.4.2 Verification -- 12.2.5 Key Distribution and Symmetrical Cryptography -- 12.3 Single Proxy Signing Rights Delegation.
12.3.1 Certificate Distribution by the Local Control Center.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- Chapter 1 Background of the Smart Grid -- 1.1 Motivations and Objectives of the Smart Grid -- 1.1.1 Better Renewable Energy Resource Adaption -- 1.1.2 Grid Operation Efficiency Advancement -- 1.1.3 Grid Reliability and Security Improvement -- 1.2 Smart Grid Communications Architecture -- 1.2.1 Conceptual Domain Model -- 1.2.2 Two‐Way Communications Network -- 1.3 Applications and Requirements -- 1.3.1 Demand Response -- 1.3.2 Advanced Metering Infrastructure -- 1.3.3 Wide‐Area Situational Awareness and Wide‐Area Monitoring Systems -- 1.3.4 Communication Networks and Cybersecurity -- 1.4 The Rest of the Book -- Chapter 2 Smart Grid Communication Infrastructures -- 2.1 An ICT Framework for the Smart Grid -- 2.1.1 Roles and Benefits of an ICT Framework -- 2.1.2 An Overview of the Proposed ICT Framework -- 2.2 Entities in the ICT Framework -- 2.2.1 Internal Data Collectors -- 2.2.2 Control Centers -- 2.2.3 Power Generators -- 2.2.4 External Data Sources -- 2.3 Communication Networks and Technologies -- 2.3.1 Private and Public Networks -- 2.3.2 Communication Technologies -- 2.4 Data Communication Requirements -- 2.4.1 Latency and Bandwidth -- 2.4.2 Interoperability -- 2.4.3 Scalability -- 2.4.4 Security -- 2.5 Summary -- Chapter 3 Self‐Sustaining Wireless Neighborhood‐Area Network Design -- 3.1 Overview of the Proposed NAN -- 3.1.1 Background and Motivation of a Self‐Sustaining Wireless NAN -- 3.1.2 Structure of the Proposed NAN -- 3.2 Preliminaries -- 3.2.1 Charging Rate Estimate -- 3.2.2 Battery‐Related Issues -- 3.2.3 Path Loss Model -- 3.3 Problem Formulations and Solutions in the NAN Design -- 3.3.1 The Cost Minimization Problem -- 3.3.2 Optimal Number of Gateways -- 3.3.3 Geographical Deployment Problem for Gateway DAPs -- 3.3.4 Global Uplink Transmission Power Efficiency -- 3.4 Numerical Results.

3.4.1 Evaluation of the Optimal Number of Gateways -- 3.4.2 Evaluation of the Global Power Efficiency -- 3.4.3 Evaluation of the Global Uplink Transmission Rates -- 3.4.4 Evaluation of the Global Power Consumption -- 3.4.5 Evaluation of the Minimum Cost Problem -- 3.5 Case Study -- 3.6 Summary -- Chapter 4 Reliable Energy‐Efficient Uplink Transmission Power Control Scheme in NAN -- 4.1 Background and Related Work -- 4.1.1 Motivations and Background -- 4.1.2 Related Work -- 4.2 System Model -- 4.3 Preliminaries -- 4.3.1 Mathematical Formulation -- 4.3.2 Energy Efficiency Utility Function -- 4.4 Hierarchical Uplink Transmission Power Control Scheme -- 4.4.1 DGD Level Game -- 4.4.2 BGD Level Game -- 4.5 Analysis of the Proposed Schemes -- 4.5.1 Estimation of B and D -- 4.5.2 Analysis of the Proposed Stackelberg Game -- 4.5.3 Algorithms to Approach NE and SE -- 4.6 Numerical Results -- 4.6.1 Simulation Settings -- 4.6.2 Estimate of D and B -- 4.6.3 Data Rate Reliability Evaluation -- 4.6.4 Evaluation of the Proposed Algorithms to Achieve NE and SE -- 4.7 Summary -- Chapter 5 Design and Analysis of a Wireless Monitoring Network for Transmission Lines in the Smart Grid -- 5.1 Background and Related Work -- 5.1.1 Background and Motivation -- 5.1.2 Related Work -- 5.2 Network Model -- 5.3 Problem Formulation -- 5.4 Proposed Power Allocation Schemes -- 5.4.1 Minimizing Total Power Usage -- 5.4.2 Maximizing Power Efficiency -- 5.4.3 Uniform Delay -- 5.4.4 Uniform Transmission Rate -- 5.5 Distributed Power Allocation Schemes -- 5.6 Numerical Results and A Case Study -- 5.6.1 Simulation Settings -- 5.6.2 Comparison of the Centralized Schemes -- 5.6.3 Case Study -- 5.7 Summary -- Chapter 6 A Real‐Time Information‐Based Demand‐Side Management System -- 6.1 Background and Related Work -- 6.1.1 Background -- 6.1.2 Related Work -- 6.2 System Model.

6.2.1 The Demand‐Side Power Management System -- 6.2.2 Mathematical Modeling -- 6.2.3 Energy Cost and Unit Price -- 6.3 Centralized DR Approaches -- 6.3.1 Minimize Peak‐to‐Average Ratio -- 6.3.2 Minimize Total Cost of Power Generation -- 6.4 Game Theoretical Approaches -- 6.4.1 Formulated Game -- 6.4.2 Game Theoretical Approach 1: Locally Computed Smart Pricing -- 6.4.3 Game Theoretical Approach 2: Semifixed Smart Pricing -- 6.4.4 Mixed Approach: Mixed GA1 and GA2 -- 6.5 Precision and Truthfulness of the Proposed DR System -- 6.6 Numerical and Simulation Results -- 6.6.1 Settings -- 6.6.2 Comparison of P1, P2 and GA1 -- 6.6.3 Comparison of Different Distributed Approaches -- 6.6.4 The Impact from Energy Storage Unit -- 6.6.5 The Impact from Increasing Renewable Energy -- 6.7 Summary -- Chapter 7 Intelligent Charging for Electric Vehicles-Scheduling in Battery Exchanges Stations -- 7.1 Background and Related Work -- 7.1.1 Background and Overview -- 7.1.2 Related Work -- 7.2 System Model -- 7.2.1 Overview of the Studied System -- 7.2.2 Mathematical Formulation -- 7.2.3 Customer Estimation -- 7.3 Load Scheduling Schemes for BESs -- 7.3.1 Constraints for a BES si -- 7.3.2 Minimizing PAR: Problem Formulation and Analysis -- 7.3.3 Problem Formulation and Analysis for Minimizing Costs -- 7.3.4 Game Theoretical Approach -- 7.4 Simulation Analysis and Results -- 7.4.1 Settings for the Simulations -- 7.4.2 Impact of the Proposed DSM on PAR -- 7.4.3 Evaluation of BESs Equipment Settings -- 7.4.3.1 Number of Charging Ports -- 7.4.3.2 Maximum Number of Fully Charged Batteries -- 7.4.3.3 Preparation at the Beginning of Each Day -- 7.4.3.4 Impact on PAR from BESs -- 7.4.4 Evaluations of the Game Theoretical Approach -- 7.5 Summary -- Chapter 8 Big Data Analytics and Cloud Computing in the Smart Grid -- 8.1 Background and Motivation -- 8.1.1 Big Data Era.

8.1.2 The Smart Grid and Big Data -- 8.2 Pricing and Energy Forecasts in Demand Response -- 8.2.1 An Overview of Pricing and Energy Forecasts -- 8.2.2 A Case Study of Energy Forecasts -- 8.3 Attack Detection -- 8.3.1 An Overview of Attack Detection in the Smart Grid -- 8.3.2 Current Problems and Techniques -- 8.4 Cloud Computing in the Smart Grid -- 8.4.1 Basics of Cloud Computing -- 8.4.2 Advantages of Cloud Computing in the Smart Grid -- 8.4.3 A Cloud Computing Architecture for the Smart Grid -- 8.5 Summary -- Chapter 9 A Secure Data Learning Scheme for Big Data Applications in the Smart Grid -- 9.1 Background and Related Work -- 9.1.1 Motivation and Background -- 9.1.2 Related Work -- 9.2 Preliminaries -- 9.2.1 Classic Centralized Learning Scheme -- 9.2.2 Supervised Learning Models -- 9.2.2.1 Supervised Regression Learning Model -- 9.2.2.2 Regularization Term -- 9.2.3 Security Model -- 9.3 Secure Data Learning Scheme -- 9.3.1 Data Learning Scheme -- 9.3.2 The Proposed Security Scheme -- 9.3.2.1 Privacy Scheme -- 9.3.2.2 Identity Protection -- 9.3.3 Analysis of the Learning Process -- 9.3.4 Analysis of the Security -- 9.4 Smart Metering Data Set Analysis-A Case Study -- 9.4.1 Smart Grid AMI and Metering Data Set -- 9.4.2 Regression Study -- 9.5 Conclusion and Future Work -- Chapter 10 Security Challenges in the Smart Grid Communication Infrastructure -- 10.1 General Security Challenges -- 10.1.1 Technical Requirements -- 10.1.2 Information Security Domains -- 10.1.3 Standards and Interoperability -- 10.2 Logical Security Architecture -- 10.2.1 Key Concepts and Assumptions -- 10.2.2 Logical Interface Categories -- 10.3 Network Security Requirements -- 10.3.1 Utility‐Owned Private Networks -- 10.3.2 Public Networks in the Smart Grid -- 10.4 Classification of Attacks -- 10.4.1 Component‐Based Attacks -- 10.4.2 Protocol‐Based Attacks.

10.5 Existing Security Solutions -- 10.6 Standardization and Regulation -- 10.6.1 Commissions and Considerations -- 10.6.2 Selected Standards -- 10.7 Summary -- Chapter 11 Security Schemes for AMI Private Networks -- 11.1 Preliminaries -- 11.1.1 Security Services -- 11.1.2 Security Mechanisms -- 11.1.3 Notations of the Keys Used in This Chapter -- 11.2 Initial Authentication -- 11.2.1 An Overview of the Proposed Authentication Process -- 11.2.1.1 DAP Authentication Process -- 11.2.1.2 Smart Meter Authentication Process -- 11.2.2 The Authentication Handshake Protocol -- 11.2.3 Security Analysis -- 11.3 Proposed Security Protocol in Uplink Transmissions -- 11.3.1 Single‐Traffic Uplink Encryption -- 11.3.2 Multiple‐Traffic Uplink Encryption -- 11.3.3 Decryption Process in Uplink Transmissions -- 11.3.4 Security Analysis -- 11.4 Proposed Security Protocol in Downlink Transmissions -- 11.4.1 Broadcast Control Message Encryption -- 11.4.2 One‐to‐One Control Message Encryption -- 11.4.3 Security Analysis -- 11.5 Domain Secrets Update -- 11.5.1 AS Public/Private Keys Update -- 11.5.2 Active Secret Key Update -- 11.5.3 Preshared Secret Key Update -- 11.6 Summary -- Chapter 12 Security Schemes for Smart Grid Communications over Public Networks -- 12.1 Overview of the Proposed Security Schemes -- 12.1.1 Background and Motivation -- 12.1.2 Applications of the Proposed Security Schemes in the Smart Grid -- 12.2 Proposed ID‐Based Scheme -- 12.2.1 Preliminaries -- 12.2.2 Identity‐Based Signcryption -- 12.2.2.1 Setup -- 12.2.2.2 Keygen -- 12.2.2.3 Signcryption -- 12.2.2.4 Decryption -- 12.2.2.5 Verification -- 12.2.3 Consistency of the Proposed IBSC Scheme -- 12.2.4 Identity‐Based Signature -- 12.2.4.1 Signature -- 12.2.4.2 Verification -- 12.2.5 Key Distribution and Symmetrical Cryptography -- 12.3 Single Proxy Signing Rights Delegation.

12.3.1 Certificate Distribution by the Local Control Center.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.