Sustainable Resource Management : Technologies for Recovery and Reuse of Energy and Waste Materials.
Material type:
- text
- computer
- online resource
- 9783527825370
- 628.4458
- TD794.5 .S878 2021
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Resource Recovery and Reuse for Sustainable Future Introduction and Overview -- 1.1 Introduction -- 1.2 Background -- 1.2.1 Hierarchy of Resource Use -- 1.2.2 Analyzing the Needs for Resource and Energy Recovery and Reuse -- 1.2.2.1 Population Growth -- 1.2.2.2 Resource Scarcity -- 1.2.2.3 Environmental Impacts -- 1.2.2.4 Economical Aspect -- 1.3 Current Status of Resource Recovery and Reuse -- 1.3.1 Wastewater -- 1.3.1.1 Nutrient Recovery -- 1.3.1.2 Organic Carbon Recovery -- 1.3.1.3 Heat Recovery -- 1.3.2 Waste -- 1.4 Research Needs -- 1.4.1 Development of Novel Technologies -- 1.4.2 Social and Economic Feasibility of Resource Recovery and Reuse -- 1.4.3 Development of Internationally Coordinated Framework and Strategy -- 1.5 Book Overview -- References -- Chapter 2 Hydrothermal Liquefaction of Food Waste: A Potential Resource Recovery Strategy -- 2.1 Introduction -- 2.1.1 Global Food Waste Production -- 2.1.2 Conventional Food Waste Management Practices -- 2.1.2.1 Land Filling -- 2.1.2.2 Fertilizer/Animal Feed -- 2.1.2.3 Incineration -- 2.1.2.4 Composting -- 2.1.3 Advanced Food Waste Management Methods -- 2.1.3.1 Acidogenesis -- 2.1.3.2 Solventogenesis -- 2.1.3.3 Biodiesel -- 2.1.3.4 Bioplastics -- 2.2 Significance of Hydrothermal Liquefaction of Food Waste -- 2.2.1 HTL Reactor Operation -- 2.2.2 Isothermal HTL and Fast HTL -- 2.2.3 HTL Products -- 2.2.4 Greenhouse Gas Emissions -- 2.3 Factors Influencing HTL During FW Treatment -- 2.3.1 Temperature -- 2.3.2 Reaction Time -- 2.3.3 Solid‐to‐Solvent Ratio -- 2.3.4 Composition of Food Waste -- 2.3.5 Catalyst Concentration -- 2.4 HTL of Food Waste: Case Studies -- 2.5 Conclusions and Future Scope -- Acknowledgement -- References -- Chapter 3 Coping with Change: (Re) Evolution of Waste Management in Local Authorities in England.
3.1 Introduction -- 3.2 Sustainability Transitions Literature -- 3.3 Waste Management in England -- 3.4 Research Design and Methods -- 3.4.1 Research Design -- 3.4.2 Methods -- 3.4.3 Selection of Interviewees -- 3.4.4 Secondary Data -- 3.5 Results and Discussion -- 3.5.1 English Waste in the Context of the EU -- 3.5.2 Influences in the UK Context for LAs -- 3.5.3 Implementation of the 2000 Waste Strategy -- 3.5.3.1 LA Implementation of Waste Policy -- 3.5.3.2 Targets -- 3.5.3.3 Financial Instruments -- 3.5.3.4 Regional Governance -- 3.5.4 Local Authorities and the Public -- 3.5.5 Legacy of the Strategy -- 3.6 Conclusions -- Acknowledgements -- References -- Chapter 4 Hydrothermal Liquefaction of Lignocellulosic Biomass for Bioenergy Production -- 4.1 Introduction -- 4.2 Composition of Lignocellulosic Biomass and their Degradation in HTL Processes -- 4.2.1 Composition of Lignocellulosic Biomass -- 4.2.2 Brief Review on the Development of HTL Technology -- 4.2.3 Main Components Degradation of the Lignocellulosic Biomass During HTL -- 4.2.3.1 Cellulose and its Degradation in HTL Processes -- 4.2.3.2 Hemicellulose and its Degradation in HTC Process -- 4.2.3.3 Lignin and its Degradation in HTC Processes -- 4.3 Research Status in HTL of Lignocellulosic Biomass -- 4.3.1 Products Description -- 4.3.1.1 Bio‐oil -- 4.3.1.2 Solid Residue -- 4.3.1.3 Other By‐products -- 4.3.2 Operating Parameters for Bio‐oil Production by HTL -- 4.3.2.1 Bio‐oil -- 4.3.2.2 Temperature -- 4.3.2.3 Heating Rate -- 4.3.2.4 Residence Time -- 4.3.2.5 Pressure -- 4.3.2.6 Catalysts -- 4.3.2.7 Liquid‐to‐Solid Ratio -- 4.4 Limitations and Prospects for Bioenergy Production from Lignocellulosic Biomass by HTL -- 4.4.1 Poor Quality of Crude Bio‐oil -- 4.4.2 Aqueous By‐products Utilization -- 4.4.3 Prospects -- 4.5 Conclusion and Future Work -- References.
Chapter 5 Resource Recovery‐Oriented Sanitation and Sustainable Human Excreta Management -- 5.1 Introduction -- 5.2 Present Scenario -- 5.2.1 Ecological Sanitation -- 5.2.1.1 Rottebehaelter and Centrifugal Separation Sanitation -- 5.2.1.2 Biofilters, Vermicomposting Units, Bag Toilets -- 5.2.2 Failure, Success, and Lessons -- 5.3 Resource Recovery Options in Rural Areas -- 5.3.1 Nutrient Recovery from Urine -- 5.3.2 Anaerobic Digestion or Composting? -- 5.3.3 Community‐Scale or Household Models? -- 5.4 Resource Recovery Sanitation in Urban Context -- 5.4.1 Energy Matters -- 5.4.2 Johkasou Systems -- 5.4.3 Possibilities of Industrial‐Scale Units -- 5.5 Life Cycle Assessment of Sanitation Systems -- 5.6 Human Excreta and Sustainable Future -- 5.6.1 Economics of Resource Recovery Sanitation -- 5.6.2 Sanitation Access and Resource Recovery -- 5.7 Conclusion and Recommendations -- References -- Chapter 6 Resource Recovery and Recycling from Livestock Manure: Current Statue, Challenges, and Future Prospects for Sustainable Management -- 6.1 Introduction -- 6.2 Present Scenario and Global Perspective of Manure Generation and Recycling -- 6.2.1 Sanitization and Hygiene in Manure Management -- 6.2.1.1 Aerobic Composting -- 6.2.2 Importance and Significance of Resource Recovery -- 6.2.2.1 Nitrogen and Phosphorus Recovery from Livestock Manure -- 6.2.2.2 Heavy Metal Recovery from Livestock Manure -- 6.3 Resource Recovery Technologies and Logistics for Handling, Transport, and Distribution of Manures -- 6.3.1 Nutrient Recovery from Manure -- 6.3.2 Bioenergy Production by Anaerobic Digestion/Co‐digestion -- 6.3.3 Composting/Co‐composting -- 6.3.4 Centralized and De‐centralized Models? -- 6.4 Energy Matters and Economic Feasibility -- 6.4.1 Energy Production -- 6.4.2 Mineral Reutilization -- 6.4.2.1 Ammonia Stripping -- 6.4.2.2 Struvite Crystallization.
6.4.2.3 Mineral Concentrates -- 6.5 Resource Recovery Sanitation in Developed and Developing Countries -- 6.5.1 Operational Guidelines for Septage Treatment and Disposal -- 6.5.1.1 Storage -- 6.5.1.2 Pasteurization -- 6.5.1.3 Chemical Treatments -- 6.5.1.4 Anaerobic Treatments -- 6.5.1.5 Composting -- 6.5.2 Testing the Possibilities of Commercial‐Scale Resource Recovery -- 6.6 Life Cycle Assessment of Sustainable Manure Management Systems -- 6.7 Innovation in Sustainable Manure Management Systems and Recycling -- 6.7.1 Economics of Resource Recovery from Manure and Sanitation -- 6.7.2 Business Models for a Circular Economy -- 6.7.3 Enabling Environment Sanitation and Financing for Resource Recovery -- 6.8 Challenges and Limitation -- 6.9 Conclusion and Future Prospects -- Acknowledgements -- References -- Chapter 7 Utilization of Microalgae and Thraustochytrids for the Production of Biofuel and Nutraceutical Products -- 7.1 Introduction -- 7.1.1 Microalgae -- 7.1.2 Thraustochytrids -- 7.1.3 Biodiesel and Biobased Jet Fuel -- 7.1.4 Docosahexaenoic Acid (DHA) and Eicosapentaenoic Acid (EPA) -- 7.2 Microalgae for Biodiesel and Jet Fuel Production -- 7.2.1 Selection of Microalgae -- 7.2.2 Processes of Microalgae to Biofuel -- 7.2.2.1 Microalgae Cultivation -- 7.2.2.2 Microalgae Harvesting -- 7.2.2.3 Extraction of Oil from Microalgae -- 7.2.2.4 Biodiesel Production from Microalgal Oil -- 7.2.2.5 Jet Fuel Production from Microalgal Oil -- 7.3 Thraustochytrids for Biodiesel Production -- 7.4 Challenges of Microalgae and Thraustochytrids to Biofuel -- 7.5 Microalgae and Thraustochytrids for DHA and EPA Productions -- 7.6 Future Perspectives -- 7.6.1 Integrated Microalgae/Thraustochytrids Cultivation and Harvesting System -- 7.6.2 Genetically Modified Microalgae/Thraustochytrids for High Oil and Easy Extraction of Lipids.
7.6.3 Integrated Microalgae/Thraustochytrids System for Biofuel and DHA/EPA Production -- References -- Chapter 8 Pertinent Issues of Algal Energy and Bio‐Product Development A Biorefinery Perspective -- 8.1 Introduction -- 8.2 Current Status of Algal Energy and Bio‐product Formation -- 8.3 Analysis of Conversion Methods -- 8.3.1 Dynamics of Algal Biomass Composition -- 8.3.2 Conversion Routes -- 8.3.3 Product Yield and Market Value -- 8.4 Competent Applications of Algae -- 8.5 Biorefinery and Integrated Approaches -- 8.6 Technological Issues: Pros and Cons -- 8.7 Life Cycle Assessment -- 8.8 Techno‐Economic Analysis (TEA) -- 8.9 Futuristic Options -- References -- Chapter 9 Resource Utilization of Sludge and Its Potential Environmental Applications for Wastewater -- 9.1 Introduction -- 9.2 Types of Sludge in Wastewater Treatment Process -- 9.2.1 Activated Sludge -- 9.2.2 Granular Sludge -- 9.2.2.1 Anaerobic Granular Sludge -- 9.2.2.2 Aerobic Granular Sludge -- 9.3 Sludge‐Based Activated Carbon for Wastewater Treatment -- 9.3.1 Production Method -- 9.3.1.1 ZnCl2 -- 9.3.1.2 H3PO4 -- 9.3.2 Treatment of Dye Wastewater -- 9.3.2.1 MG Sorption onto Sludge‐Based ACs -- 9.3.2.2 Mineral Acid Modification of AGS‐Derived AC for MG Sorption -- 9.3.3 Treatment of Heavy Metal‐Contained Wastewater -- 9.3.3.1 Heavy Metal Sorption onto Sludge‐Based AC -- 9.3.3.2 Cu(II) Sorption onto AGS‐AC in the Presence of HA and FA -- 9.4 Granular Sludge Biosorbent Applied for Wastewater Treatment -- 9.4.1 Treatment of Dye Wastewater -- 9.4.1.1 Role of EPS in Aerobic Granular Sludge for MB Sorption -- 9.4.1.2 Biosorption of Dye Wastewater and Photocatalytic Regeneration of AGS -- 9.4.2 Treatment of Heavy Metal‐Contained Wastewater -- 9.4.2.1 Zn(II) Sorption onto AGS -- 9.4.2.2 Cu(II) Sorption onto AGS -- 9.4.2.3 Ni(II) Sorption onto AGS/AnGS.
9.4.2.4 Magnetic Modification of AnGS for Pb(II) and Cu(II) Removal.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.