Mechanics of the Solar System : An Introduction to Mathematical Astronomy.
Material type:
- text
- computer
- online resource
- 9781839522352
- 520.151
- QB47 .E936 2021
Cover -- Dedication -- Title Page -- Copyright -- Contents -- Introduction -- Chapter 1 Time and Space in Astronomy -- 1.1 Time -- 1.2 Universal Time -- 1.3 The solar year -- 1.4 The modern calendar -- 1.5 Julian Day numbers -- 1.6 Sidereal time -- 1.7 Flamsteed and the RGO -- 1.8 The celestial sphere -- 1.9 Coordinate systems -- 1.10 Ecliptic and equatorial coordinates -- 1.11 Transformation of coordinates between the ecliptic and equatorial systems -- 1.12 Equatorial coordinates of the Sun -- 1.13 Parallax -- 1.14 Angular separation -- 1.15 Celestial line-ups -- 1.16 Terrestrial coordinates -- 1.17 Directions of cardinal points in terms of a & -- A -- 1.18 Rising and setting -- 1.19 Stellar transits across a local meridian -- 1.20 Exercises -- Chapter 2 Planetary Motion -- 2.1 Ancient and modern conceptions of the Cosmos -- 2.2 Kepler and Newton -- 2.3 Properties of a planetary orbit -- 2.4 The mean anomaly -- 2.5 Orientation of the orbit -- 2.6 Determination of the ecliptic coordinates of a planet -- 2.7 Non-periodic orbits -- 2.8 Exercises -- Chapter 3 The General Kepler Problem -- 3.1 Introduction -- 3.2 Determination of the anomaly -- 3.3 An approximation for ϕ in a periodic orbit -- 3.4 Conclusion -- 3.5 Examples -- 3.6 Exercises -- Appendix -- Chapter 4 Calculation of the Position and Velocity of a Planet -- 4.1 Calculation from orbital elements -- 4.2 Comets -- 4.3 Calculation from VSOP -- 4.4 Geocentric position and velocity vectors -- 4.5 Time derivatives of geocentric coordinates -- 4.6 Exercises -- Chapter 5 Geocentric Observation -- 5.1 Relative motion -- 5.2 A schematic model -- 5.3 Geocentric orbits -- 5.4 Special events -- 5.5 Realistic calculations -- 5.6 Sample results for two planets -- 5.7 Planetocentric data -- (i) Planetocentric declination of the Sun and Earth -- (ii) Longitude of the Planet's central meridian.
(iii) The angles P & -- Q -- 5.8 Exercises -- Chapter 6 Corrections to the Apparent Position of a Planet -- 6.1 Method of calculation -- 6.2 ΔT -- 6.3 Aberration -- 6.4 Nutation -- 6.5 Conclusion -- 6.6 Stellar aberration -- 6.7 Exercises -- Chapter 7 Precession -- 7.1 The Earth as a very large top -- 7.2 Low accuracy calculation of the effects of precession 121 -- 7.3 The precession matrix -- 7.4 Equatorial coordinates -- 7.5 The Eulerian angles method -- 7.6 Instantaneous rate of precession -- 7.7 Reduction of orbital elements to a standard epoch -- 7.8 Exercises -- Chapter 8 Solar Transits of the Inner Planets -- 8.1 Rare events -- 8.2 Anatomy of a transit -- 8.3 Transits in history -- 8.4 Method of calculation -- 8.5 Transit systematics -- Mercury -- Venus -- 8.6 Topocentric effects and visibility of transits -- 8.7 Determining the size of the Solar System -- 8.8 Exercises -- Appendix -- Chapter 9 Seven Assorted Topics -- 9.1 Lagrange and the restricted three-body problem -- 9.1.1 Introduction -- 9.1.2 Lagrangian mechanics -- 9.1.3 The restricted three-body problem -- 9.1.4 Equilibrium points -- 9.1.5 Stability -- 9.1.6 The normal modes at L1, L2 & -- L3 -- 9.1.7 The points L4 and L5 -- 9.1.8 Discussion -- Appendices A, B -- 9.2 Orbital elements from the position and velocity vectors of the planet -- 9.2.1 Calculation of the orbital elements -- 9.2.2 Time dependence of the orbital elements -- 9.3 The anomalous motion of Mercury -- 9.3.1 Perihelion precession -- 9.3.2 New theory of gravity: GR -- 9.3.3 Application to Mercury -- 9.4 MOID -- 9.4.1 Oumuamua -- 9.5 Simple theory of the EOT -- 9.5.1 Qualitative argument -- 9.5.2 Lowest order calculation -- 9.6 Apparent and absolute visual magnitude -- 9.6.1 Stellar parallax -- 9.6.2 Stellar visual magnitude -- 9.6.3 Visual magnitude of a planet -- 9.7 Celestial navigation -- 9.7.1 Lunar distance.
9.7.2 Stellar altitudes -- Chapter 10 Mathematical Notes -- 10.1 Vectors -- 10.2 Matrices -- 10.3 Rotations of the coordinate axes -- 10.4 Non-commutation of finite rotations - experimental proof -- 10.5 The G-matrices -- 10.6 More about vector products -- 10.7 Angular velocity -- 10.8 General forms for finite rotations -- References -- Solutions to the exercises.
This book develops methods of computing astronomical phenomena from basic ideas. The position of a celestial body is defined by a vector, with components referred to a system of coordinate axes. The relations between various systems in regular use by astronomers are described. In cases where two systems differ in spatial orientation, they are related by a rotation matrix. These matrices are discussed in considerable detail in the mathematical notes. _x000D_ Other topics discussed include: Kepler's Laws and the dynamics of planetary motion, Precession and Nutation, transits of Venus and Mercury, Lagrange points._x000D_ While no previous knowledge of Astronomy is necessary, it is assumed that the reader is familiar with elementary algebra, trigonometry and calculus.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.