ORPP logo
Image from Google Jackets

Organic Electronics 1 : Materials and Physical Processes.

By: Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2021Copyright date: ©2021Edition: 1st edDescription: 1 online resource (213 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119818922
Subject(s): Genre/Form: Additional physical formats: Print version:: Organic Electronics 1DDC classification:
  • 621.381
LOC classification:
  • TK7871.15.P6 .N489 2021
Online resources:
Contents:
Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Introduction -- 1 Semiconductor Theory -- 1.1. Introduction -- 1.2. Review of the basic concepts of crystalline semiconductors -- 1.2.1. Intrinsic semiconductors -- 1.2.2. Extrinsic semiconductors -- 1.2.3. Fermi level -- 1.2.4. Charge transport in semiconductors -- 1.3. P-N junction -- 1.3.1. Space charge region -- 1.3.2. Junction capacitance -- 1.4. Impurities and defects -- 1.4.1. Traps and recombination centers -- 1.5. Metal/semiconductor contact -- 1.5.1. Parameters of metal/semiconductor contacts -- 1.5.2. Formation of metal/semiconductor contacts -- 1.5.3. Width Å of the space charge region -- 1.5.4. Junction capacitance -- 1.5.5. Schottky effect -- 1.5.6. Schottky diode -- 1.6. Semiconductors under non-equilibrium conditions -- 1.6.1. Parameters of a semiconductor under non-equilibrium conditions -- 1.6.2. Recombination of carriers via recombination centers (Shockley-Read-Hall theory) -- 1.6.3. Transient relaxation current -- 1.7. Space charge current -- 1.7.1. The case of an ideal semiconductor -- 1.7.2. Trap-filled limit voltage -- 1.7.3. Discrete traps and trap distribution -- 1.8. Hopping conduction -- 2 Materials -- 2.1. Introduction -- 2.2. Organic materials -- 2.2.1. Binding and hybridization of carbon -- 2.3. Conjugated polymers -- 2.3.1. Polyacetylene -- 2.3.2. Benzene -- 2.3.3. Deposition of polymer films -- 2.4. Energy bands -- 2.4.1. Concepts of solitons and polarons -- 2.4.2. Concept of doping -- 2.5. Small molecules -- 2.6. Design and engineering of organic materials -- 2.7. Hybrid materials or nanocomposites -- 2.7.1. Polymer matrix nanocomposites -- 2.7.2. Nanocomposites with nanomaterials -- 2.7.3. Preparation of nanocomposites -- 2.8. Transparent and conductive materials -- 2.8.1. Indium tin oxide -- 2.8.2. Fluorine-doped tin oxide.
2.8.3. Other transparent oxide conductors -- 2.8.4. Other transparent conductive materials -- 2.9. Materials for encapsulation -- 2.9.1. Glass slides -- 2.9.2. Hybrid multilayers -- 3 Optical Processes -- 3.1. Introduction -- 3.2. Interaction between light and molecules -- 3.2.1. Electronic transitions -- 3.2.2. Selection rules -- 3.3. Optical processes -- 3.3.1. Light absorption -- 3.3.2. Light emission -- 3.3.3. Perrin-Jablonski diagram -- 3.3.4. Quenching -- 3.4. Excitons -- 3.4.1. Classification of excitons -- 3.4.2. Binding energy of excitons -- 3.4.3. Movement of excitons -- 3.4.4. Dissociation of excitons -- 3.5. Experimental techniques -- 3.5.1. UV-visible absorption spectroscopy -- 3.5.2. Photoluminescence spectroscopy -- 3.5.3. Infrared and Raman spectroscopy -- 4 Electronic Processes -- 4.1. Introduction -- 4.2. Charge carrier injection process -- 4.2.1. Injection mechanisms -- 4.2.2. Hole or electron devices -- 4.2.3. Transport layers -- 4.3. Charge transport process -- 4.3.1. Hopping mechanisms -- 4.3.2. Space-charge limited conduction -- 4.3.3. Defects and traps in organic semiconductors -- 5 Interface Processes -- 5.1. Introduction -- 5.2. Formation of organic semiconductor/metal interfaces -- 5.2.1. Vacuum-level alignment model: Mott-Schottky theory -- 5.2.2. Interface dipole model: Bardeen's theory -- 5.2.3. Characteristics of organic semiconductor/metal interfaces -- 5.2.4. Fermi-level pinning -- 5.2.5. Integer charge transfer process -- 5.3. Surface characterization techniques -- 5.3.1. Atomic force microscopy -- 5.3.2. X-ray photoelectron spectroscopy -- 5.3.3. UV photoelectron spectroscopy -- 5.4. Interface engineering -- 5.4.1. Inverted structure devices -- 5.4.2. Self-assembled monolayers -- 5.5. Conclusion -- List of Acronyms -- General Terms -- Materials -- References -- Index.
Other titles from iSTE in Electronics Engineering -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Introduction -- 1 Semiconductor Theory -- 1.1. Introduction -- 1.2. Review of the basic concepts of crystalline semiconductors -- 1.2.1. Intrinsic semiconductors -- 1.2.2. Extrinsic semiconductors -- 1.2.3. Fermi level -- 1.2.4. Charge transport in semiconductors -- 1.3. P-N junction -- 1.3.1. Space charge region -- 1.3.2. Junction capacitance -- 1.4. Impurities and defects -- 1.4.1. Traps and recombination centers -- 1.5. Metal/semiconductor contact -- 1.5.1. Parameters of metal/semiconductor contacts -- 1.5.2. Formation of metal/semiconductor contacts -- 1.5.3. Width Å of the space charge region -- 1.5.4. Junction capacitance -- 1.5.5. Schottky effect -- 1.5.6. Schottky diode -- 1.6. Semiconductors under non-equilibrium conditions -- 1.6.1. Parameters of a semiconductor under non-equilibrium conditions -- 1.6.2. Recombination of carriers via recombination centers (Shockley-Read-Hall theory) -- 1.6.3. Transient relaxation current -- 1.7. Space charge current -- 1.7.1. The case of an ideal semiconductor -- 1.7.2. Trap-filled limit voltage -- 1.7.3. Discrete traps and trap distribution -- 1.8. Hopping conduction -- 2 Materials -- 2.1. Introduction -- 2.2. Organic materials -- 2.2.1. Binding and hybridization of carbon -- 2.3. Conjugated polymers -- 2.3.1. Polyacetylene -- 2.3.2. Benzene -- 2.3.3. Deposition of polymer films -- 2.4. Energy bands -- 2.4.1. Concepts of solitons and polarons -- 2.4.2. Concept of doping -- 2.5. Small molecules -- 2.6. Design and engineering of organic materials -- 2.7. Hybrid materials or nanocomposites -- 2.7.1. Polymer matrix nanocomposites -- 2.7.2. Nanocomposites with nanomaterials -- 2.7.3. Preparation of nanocomposites -- 2.8. Transparent and conductive materials -- 2.8.1. Indium tin oxide -- 2.8.2. Fluorine-doped tin oxide.

2.8.3. Other transparent oxide conductors -- 2.8.4. Other transparent conductive materials -- 2.9. Materials for encapsulation -- 2.9.1. Glass slides -- 2.9.2. Hybrid multilayers -- 3 Optical Processes -- 3.1. Introduction -- 3.2. Interaction between light and molecules -- 3.2.1. Electronic transitions -- 3.2.2. Selection rules -- 3.3. Optical processes -- 3.3.1. Light absorption -- 3.3.2. Light emission -- 3.3.3. Perrin-Jablonski diagram -- 3.3.4. Quenching -- 3.4. Excitons -- 3.4.1. Classification of excitons -- 3.4.2. Binding energy of excitons -- 3.4.3. Movement of excitons -- 3.4.4. Dissociation of excitons -- 3.5. Experimental techniques -- 3.5.1. UV-visible absorption spectroscopy -- 3.5.2. Photoluminescence spectroscopy -- 3.5.3. Infrared and Raman spectroscopy -- 4 Electronic Processes -- 4.1. Introduction -- 4.2. Charge carrier injection process -- 4.2.1. Injection mechanisms -- 4.2.2. Hole or electron devices -- 4.2.3. Transport layers -- 4.3. Charge transport process -- 4.3.1. Hopping mechanisms -- 4.3.2. Space-charge limited conduction -- 4.3.3. Defects and traps in organic semiconductors -- 5 Interface Processes -- 5.1. Introduction -- 5.2. Formation of organic semiconductor/metal interfaces -- 5.2.1. Vacuum-level alignment model: Mott-Schottky theory -- 5.2.2. Interface dipole model: Bardeen's theory -- 5.2.3. Characteristics of organic semiconductor/metal interfaces -- 5.2.4. Fermi-level pinning -- 5.2.5. Integer charge transfer process -- 5.3. Surface characterization techniques -- 5.3.1. Atomic force microscopy -- 5.3.2. X-ray photoelectron spectroscopy -- 5.3.3. UV photoelectron spectroscopy -- 5.4. Interface engineering -- 5.4.1. Inverted structure devices -- 5.4.2. Self-assembled monolayers -- 5.5. Conclusion -- List of Acronyms -- General Terms -- Materials -- References -- Index.

Other titles from iSTE in Electronics Engineering -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.