ORPP logo
Image from Google Jackets

Heat Transfer 1 : Conduction.

By: Contributor(s): Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2021Copyright date: ©2021Edition: 1st edDescription: 1 online resource (351 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119818212
Subject(s): Genre/Form: Additional physical formats: Print version:: Heat Transfer 1DDC classification:
  • 536.23
LOC classification:
  • QC321 .L436 2021
Online resources:
Contents:
Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- Introduction -- I.1. Preamble -- I.2. Introduction -- I.3. Interlude -- 1 The Problem of Thermal Conduction: General Comments -- 1.1. The fundamental problem of thermal conduction -- 1.2. Definitions -- 1.2.1. Temperature, isothermal surface and gradient -- 1.2.2. Flow and density of flow -- 1.3. Relation to thermodynamics -- 1.3.1. Calorimetry -- 1.3.2. The first principle -- 1.3.3. The second principle -- 2 The Physics of Conduction -- 2.1. Introduction -- 2.2. Fourier's law -- 2.2.1. Experiment -- 2.2.2. Temperature profile -- 2.2.3. General expression of the Fourier law -- 2.3. Heat equation -- 2.3.1. General problem -- 2.3.2. Mono-dimensional plane problem -- 2.3.3. Case of the axisymmetric system -- 2.3.4. Case of the spherical system -- 2.4. Resolution of a problem -- 2.5. Examples of application -- 2.5.1. Problems involving spherical symmetry -- 3 Conduction in a Stationary Regime -- 3.1. Thermal resistance -- 3.1.1. Thermal resistance: plane geometry -- 3.1.2. Thermal resistance: axisymmetric geometry. The case of a cylindrical wall -- 3.1.3. Thermal resistance to convection -- 3.1.4. Critical radius -- 3.2. Examples of the application of thermal resistance in plane geometry -- 3.3. Examples of the application of the thermal resistance in cylindrical geometry -- 3.4. Problem of the critical diameter -- 3.5. Problem with the heat balance -- 4 Quasi-stationary Model -- 4.1. We can perform a simplified calculation, adopting the following hypotheses -- 4.2. Method: instantaneous thermal balance -- 4.3. Resolution -- 4.4. Applications for plane systems -- 4.5. Applications for axisymmetric systems -- 5 Non-stationary Conduction -- 5.1. Single-dimensional problem -- 5.1.1. Temperature imposed at the interface at instant t =0.
5.2. Non-stationary conduction with constant flow density -- 5.3. Temperature imposed on the wall: sinusoidal variation -- 5.4. Problem with two walls stuck together -- 5.5. Application examples -- 5.5.1. Simple applications -- 5.5.2. Some scenes from daily life -- 6 Fin Theory: Notions and Examples -- 6.1. Notions regarding the theory of fins -- 6.1.1. Principle of fins -- 6.1.2. Elementary fin theory -- 6.1.3. Parallelepiped fin -- 6.2. Examples of application -- Appendices -- Appendix 1: Heat Equation of a Three-dimensional System -- Appendix 2: Heat Equation: Writing in the Main Coordinate Systems -- Appendix 3: One-dimensional Heat Equation -- Appendix 4: Conduction of the Heat in a Non-stationary Regime: Solutions to Classic Problems -- Appendix 5: Table of erf (x), erfc(x) and ierfc(x) Functions -- Appendix 6: Complementary Information Regarding Fins -- Appendix 7: The Laplace Transform -- Appendix 8: Reminders Regarding Hyperbolic Functions -- References -- Index -- Other titles from iSTE in Mechanical Engineering and Solid Mechanics -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- Introduction -- I.1. Preamble -- I.2. Introduction -- I.3. Interlude -- 1 The Problem of Thermal Conduction: General Comments -- 1.1. The fundamental problem of thermal conduction -- 1.2. Definitions -- 1.2.1. Temperature, isothermal surface and gradient -- 1.2.2. Flow and density of flow -- 1.3. Relation to thermodynamics -- 1.3.1. Calorimetry -- 1.3.2. The first principle -- 1.3.3. The second principle -- 2 The Physics of Conduction -- 2.1. Introduction -- 2.2. Fourier's law -- 2.2.1. Experiment -- 2.2.2. Temperature profile -- 2.2.3. General expression of the Fourier law -- 2.3. Heat equation -- 2.3.1. General problem -- 2.3.2. Mono-dimensional plane problem -- 2.3.3. Case of the axisymmetric system -- 2.3.4. Case of the spherical system -- 2.4. Resolution of a problem -- 2.5. Examples of application -- 2.5.1. Problems involving spherical symmetry -- 3 Conduction in a Stationary Regime -- 3.1. Thermal resistance -- 3.1.1. Thermal resistance: plane geometry -- 3.1.2. Thermal resistance: axisymmetric geometry. The case of a cylindrical wall -- 3.1.3. Thermal resistance to convection -- 3.1.4. Critical radius -- 3.2. Examples of the application of thermal resistance in plane geometry -- 3.3. Examples of the application of the thermal resistance in cylindrical geometry -- 3.4. Problem of the critical diameter -- 3.5. Problem with the heat balance -- 4 Quasi-stationary Model -- 4.1. We can perform a simplified calculation, adopting the following hypotheses -- 4.2. Method: instantaneous thermal balance -- 4.3. Resolution -- 4.4. Applications for plane systems -- 4.5. Applications for axisymmetric systems -- 5 Non-stationary Conduction -- 5.1. Single-dimensional problem -- 5.1.1. Temperature imposed at the interface at instant t =0.

5.2. Non-stationary conduction with constant flow density -- 5.3. Temperature imposed on the wall: sinusoidal variation -- 5.4. Problem with two walls stuck together -- 5.5. Application examples -- 5.5.1. Simple applications -- 5.5.2. Some scenes from daily life -- 6 Fin Theory: Notions and Examples -- 6.1. Notions regarding the theory of fins -- 6.1.1. Principle of fins -- 6.1.2. Elementary fin theory -- 6.1.3. Parallelepiped fin -- 6.2. Examples of application -- Appendices -- Appendix 1: Heat Equation of a Three-dimensional System -- Appendix 2: Heat Equation: Writing in the Main Coordinate Systems -- Appendix 3: One-dimensional Heat Equation -- Appendix 4: Conduction of the Heat in a Non-stationary Regime: Solutions to Classic Problems -- Appendix 5: Table of erf (x), erfc(x) and ierfc(x) Functions -- Appendix 6: Complementary Information Regarding Fins -- Appendix 7: The Laplace Transform -- Appendix 8: Reminders Regarding Hyperbolic Functions -- References -- Index -- Other titles from iSTE in Mechanical Engineering and Solid Mechanics -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.