ORPP logo
Image from Google Jackets

Big Data Analytics with Hadoop 3 : Build Highly Effective Analytics Solutions to Gain Valuable Insight into Your Big Data.

By: Material type: TextTextPublisher: Birmingham : Packt Publishing, Limited, 2018Copyright date: ©2018Edition: 1st edDescription: 1 online resource (471 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781788624954
Subject(s): Genre/Form: Additional physical formats: Print version:: Big Data Analytics with Hadoop 3DDC classification:
  • 005.7
LOC classification:
  • QA76.9.B45 .A453 2018
Online resources:
Contents:
Cover -- Title Page -- Copyright and Credits -- Packt Upsell -- Contributors -- Table of Contents -- Preface -- Chapter 1: Introduction to Hadoop -- Hadoop Distributed File System -- High availability -- Intra-DataNode balancer -- Erasure coding -- Port numbers -- MapReduce framework -- Task-level native optimization -- YARN -- Opportunistic containers -- Types of container execution -- YARN timeline service v.2 -- Enhancing scalability and reliability -- Usability improvements -- Architecture -- Other changes -- Minimum required Java version -- Shell script rewrite -- Shaded-client JARs -- Installing Hadoop 3 -- Prerequisites -- Downloading -- Installation -- Setup password-less ssh -- Setting up the NameNode -- Starting HDFS -- Setting up the YARN service -- Erasure Coding -- Intra-DataNode balancer -- Installing YARN timeline service v.2 -- Setting up the HBase cluster -- Simple deployment for HBase -- Enabling the co-processor -- Enabling timeline service v.2 -- Running timeline service v.2 -- Enabling MapReduce to write to timeline service v.2 -- Summary -- Chapter 2: Overview of Big Data Analytics -- Introduction to data analytics -- Inside the data analytics process -- Introduction to big data -- Variety of data -- Velocity of data -- Volume of data -- Veracity of data -- Variability of data -- Visualization -- Value -- Distributed computing using Apache Hadoop -- The MapReduce framework -- Hive -- Downloading and extracting the Hive binaries -- Installing Derby -- Using Hive -- Creating a database -- Creating a table -- SELECT statement syntax -- WHERE clauses -- INSERT statement syntax -- Primitive types -- Complex types -- Built-in operators and functions -- Built-in operators -- Built-in functions -- Language capabilities -- A cheat sheet on retrieving information -- Apache Spark -- Visualization using Tableau -- Summary.
Chapter 3: Big Data Processing with MapReduce -- The MapReduce framework -- Dataset -- Record reader -- Map -- Combiner -- Partitioner -- Shuffle and sort -- Reduce -- Output format -- MapReduce job types -- Single mapper job -- Single mapper reducer job -- Multiple mappers reducer job -- SingleMapperCombinerReducer job -- Scenario -- MapReduce patterns -- Aggregation patterns -- Average temperature by city -- Record count -- Min/max/count -- Average/median/standard deviation -- Filtering patterns -- Join patterns -- Inner join -- Left anti join -- Left outer join -- Right outer join -- Full outer join -- Left semi join -- Cross join -- Summary -- Chapter 4: Scientific Computing and Big Data Analysis with Python and Hadoop -- Installation -- Installing standard Python -- Installing Anaconda -- Using Conda -- Data analysis -- Summary -- Chapter 5: Statistical Big Data Computing with R and Hadoop -- Introduction -- Install R on workstations and connect to the data in Hadoop -- Install R on a shared server and connect to Hadoop -- Utilize Revolution R Open -- Execute R inside of MapReduce using RMR2 -- Summary and outlook for pure open source options -- Methods of integrating R and Hadoop -- RHADOOP - install R on workstations and connect to data in Hadoop -- RHIPE - execute R inside Hadoop MapReduce -- R and Hadoop Streaming -- RHIVE - install R on workstations and connect to data in Hadoop -- ORCH - Oracle connector for Hadoop -- Data analytics -- Summary -- Chapter 6: Batch Analytics with Apache Spark -- SparkSQL and DataFrames -- DataFrame APIs and the SQL API -- Pivots -- Filters -- User-defined functions -- Schema - structure of data -- Implicit schema -- Explicit schema -- Encoders -- Loading datasets -- Saving datasets -- Aggregations -- Aggregate functions -- count -- first -- last -- approx_count_distinct -- min -- max -- avg -- sum.
kurtosis -- skewness -- Variance -- Standard deviation -- Covariance -- groupBy -- Rollup -- Cube -- Window functions -- ntiles -- Joins -- Inner workings of join -- Shuffle join -- Broadcast join -- Join types -- Inner join -- Left outer join -- Right outer join -- Outer join -- Left anti join -- Left semi join -- Cross join -- Performance implications of join -- Summary -- Chapter 7: Real-Time Analytics with Apache Spark -- Streaming -- At-least-once processing -- At-most-once processing -- Exactly-once processing -- Spark Streaming -- StreamingContext -- Creating StreamingContext -- Starting StreamingContext -- Stopping StreamingContext -- Input streams -- receiverStream -- socketTextStream -- rawSocketStream -- fileStream -- textFileStream -- binaryRecordsStream -- queueStream -- textFileStream example -- twitterStream example -- Discretized Streams -- Transformations -- Windows operations -- Stateful/stateless transformations -- Stateless transformations -- Stateful transformations -- Checkpointing -- Metadata checkpointing -- Data checkpointing -- Driver failure recovery -- Interoperability with streaming platforms (Apache Kafka) -- Receiver-based -- Direct Stream -- Structured Streaming -- Getting deeper into Structured Streaming -- Handling event time and late date -- Fault-tolerance semantics -- Summary -- Chapter 8: Batch Analytics with Apache Flink -- Introduction to Apache Flink -- Continuous processing for unbounded datasets -- Flink, the streaming model, and bounded datasets -- Installing Flink -- Downloading Flink -- Installing Flink -- Starting a local Flink cluster -- Using the Flink cluster UI -- Batch analytics -- Reading file -- File-based -- Collection-based -- Generic -- Transformations -- GroupBy -- Aggregation -- Joins -- Inner join -- Left outer join -- Right outer join -- Full outer join -- Writing to a file -- Summary.
Chapter 9: Stream Processing with Apache Flink -- Introduction to streaming execution model -- Data processing using the DataStream API -- Execution environment -- Data sources -- Socket-based -- File-based -- Transformations -- map -- flatMap -- filter -- keyBy -- reduce -- fold -- Aggregations -- window -- Global windows -- Tumbling windows -- Sliding windows -- Session windows -- windowAll -- union -- Window join -- split -- Select -- Project -- Physical partitioning -- Custom partitioning -- Random partitioning -- Rebalancing partitioning -- Rescaling -- Broadcasting -- Event time and watermarks -- Connectors -- Kafka connector -- Twitter connector -- RabbitMQ connector -- Elasticsearch connector -- Cassandra connector -- Summary -- Chapter 10: Visualizing Big Data -- Introduction -- Tableau -- Chart types -- Line charts -- Pie chart -- Bar chart -- Heat map -- Using Python to visualize data -- Using R to visualize data -- Big data visualization tools -- Summary -- Chapter 11: Introduction to Cloud Computing -- Concepts and terminology -- Cloud -- IT resource -- On-premise -- Cloud consumers and Cloud providers -- Scaling -- Types of scaling -- Horizontal scaling -- Vertical scaling -- Cloud service -- Cloud service consumer -- Goals and benefits -- Increased scalability -- Increased availability and reliability -- Risks and challenges -- Increased security vulnerabilities -- Reduced operational governance control -- Limited portability between Cloud providers -- Roles and boundaries -- Cloud provider -- Cloud consumer -- Cloud service owner -- Cloud resource administrator -- Additional roles -- Organizational boundary -- Trust boundary -- Cloud characteristics -- On-demand usage -- Ubiquitous access -- Multi-tenancy (and resource pooling) -- Elasticity -- Measured usage -- Resiliency -- Cloud delivery models -- Infrastructure as a Service.
Platform as a Service -- Software as a Service -- Combining Cloud delivery models -- IaaS + PaaS -- IaaS + PaaS + SaaS -- Cloud deployment models -- Public Clouds -- Community Clouds -- Private Clouds -- Hybrid Clouds -- Summary -- Chapter 12: Using Amazon Web Services -- Amazon Elastic Compute Cloud -- Elastic web-scale computing -- Complete control of operations -- Flexible Cloud hosting services -- Integration -- High reliability -- Security -- Inexpensive -- Easy to start -- Instances and Amazon Machine Images -- Launching multiple instances of an AMI -- Instances -- AMIs -- Regions and availability zones -- Region and availability zone concepts -- Regions -- Availability zones -- Available regions -- Regions and endpoints -- Instance types -- Tag basics -- Amazon EC2 key pairs -- Amazon EC2 security groups for Linux instances -- Elastic IP addresses -- Amazon EC2 and Amazon Virtual Private Cloud -- Amazon Elastic Block Store -- Amazon EC2 instance store -- What is AWS Lambda? -- When should I use AWS Lambda? -- Introduction to Amazon S3 -- Getting started with Amazon S3 -- Comprehensive security and compliance capabilities -- Query in place -- Flexible management -- Most supported platform with the largest ecosystem -- Easy and flexible data transfer -- Backup and recovery -- Data archiving -- Data lakes and big data analytics -- Hybrid Cloud storage -- Cloud-native application data -- Disaster recovery -- Amazon DynamoDB -- Amazon Kinesis Data Streams -- What can I do with Kinesis Data Streams? -- Accelerated log and data feed intake and processing -- Real-time metrics and reporting -- Real-time data analytics -- Complex stream processing -- Benefits of using Kinesis Data Streams -- AWS Glue -- When should I use AWS Glue? -- Amazon EMR -- Practical AWS EMR cluster -- Summary -- Index.
Summary: Apache Hadoop is the most popular platform for big data processing to build powerful analytics solutions. This book shows you how to do just that, with the help of practical examples. You will be well-versed with the analytical capabilities of Hadoop ecosystem with Apache Spark and Apache Flink to perform big data analytics by the end of this book.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright and Credits -- Packt Upsell -- Contributors -- Table of Contents -- Preface -- Chapter 1: Introduction to Hadoop -- Hadoop Distributed File System -- High availability -- Intra-DataNode balancer -- Erasure coding -- Port numbers -- MapReduce framework -- Task-level native optimization -- YARN -- Opportunistic containers -- Types of container execution -- YARN timeline service v.2 -- Enhancing scalability and reliability -- Usability improvements -- Architecture -- Other changes -- Minimum required Java version -- Shell script rewrite -- Shaded-client JARs -- Installing Hadoop 3 -- Prerequisites -- Downloading -- Installation -- Setup password-less ssh -- Setting up the NameNode -- Starting HDFS -- Setting up the YARN service -- Erasure Coding -- Intra-DataNode balancer -- Installing YARN timeline service v.2 -- Setting up the HBase cluster -- Simple deployment for HBase -- Enabling the co-processor -- Enabling timeline service v.2 -- Running timeline service v.2 -- Enabling MapReduce to write to timeline service v.2 -- Summary -- Chapter 2: Overview of Big Data Analytics -- Introduction to data analytics -- Inside the data analytics process -- Introduction to big data -- Variety of data -- Velocity of data -- Volume of data -- Veracity of data -- Variability of data -- Visualization -- Value -- Distributed computing using Apache Hadoop -- The MapReduce framework -- Hive -- Downloading and extracting the Hive binaries -- Installing Derby -- Using Hive -- Creating a database -- Creating a table -- SELECT statement syntax -- WHERE clauses -- INSERT statement syntax -- Primitive types -- Complex types -- Built-in operators and functions -- Built-in operators -- Built-in functions -- Language capabilities -- A cheat sheet on retrieving information -- Apache Spark -- Visualization using Tableau -- Summary.

Chapter 3: Big Data Processing with MapReduce -- The MapReduce framework -- Dataset -- Record reader -- Map -- Combiner -- Partitioner -- Shuffle and sort -- Reduce -- Output format -- MapReduce job types -- Single mapper job -- Single mapper reducer job -- Multiple mappers reducer job -- SingleMapperCombinerReducer job -- Scenario -- MapReduce patterns -- Aggregation patterns -- Average temperature by city -- Record count -- Min/max/count -- Average/median/standard deviation -- Filtering patterns -- Join patterns -- Inner join -- Left anti join -- Left outer join -- Right outer join -- Full outer join -- Left semi join -- Cross join -- Summary -- Chapter 4: Scientific Computing and Big Data Analysis with Python and Hadoop -- Installation -- Installing standard Python -- Installing Anaconda -- Using Conda -- Data analysis -- Summary -- Chapter 5: Statistical Big Data Computing with R and Hadoop -- Introduction -- Install R on workstations and connect to the data in Hadoop -- Install R on a shared server and connect to Hadoop -- Utilize Revolution R Open -- Execute R inside of MapReduce using RMR2 -- Summary and outlook for pure open source options -- Methods of integrating R and Hadoop -- RHADOOP - install R on workstations and connect to data in Hadoop -- RHIPE - execute R inside Hadoop MapReduce -- R and Hadoop Streaming -- RHIVE - install R on workstations and connect to data in Hadoop -- ORCH - Oracle connector for Hadoop -- Data analytics -- Summary -- Chapter 6: Batch Analytics with Apache Spark -- SparkSQL and DataFrames -- DataFrame APIs and the SQL API -- Pivots -- Filters -- User-defined functions -- Schema - structure of data -- Implicit schema -- Explicit schema -- Encoders -- Loading datasets -- Saving datasets -- Aggregations -- Aggregate functions -- count -- first -- last -- approx_count_distinct -- min -- max -- avg -- sum.

kurtosis -- skewness -- Variance -- Standard deviation -- Covariance -- groupBy -- Rollup -- Cube -- Window functions -- ntiles -- Joins -- Inner workings of join -- Shuffle join -- Broadcast join -- Join types -- Inner join -- Left outer join -- Right outer join -- Outer join -- Left anti join -- Left semi join -- Cross join -- Performance implications of join -- Summary -- Chapter 7: Real-Time Analytics with Apache Spark -- Streaming -- At-least-once processing -- At-most-once processing -- Exactly-once processing -- Spark Streaming -- StreamingContext -- Creating StreamingContext -- Starting StreamingContext -- Stopping StreamingContext -- Input streams -- receiverStream -- socketTextStream -- rawSocketStream -- fileStream -- textFileStream -- binaryRecordsStream -- queueStream -- textFileStream example -- twitterStream example -- Discretized Streams -- Transformations -- Windows operations -- Stateful/stateless transformations -- Stateless transformations -- Stateful transformations -- Checkpointing -- Metadata checkpointing -- Data checkpointing -- Driver failure recovery -- Interoperability with streaming platforms (Apache Kafka) -- Receiver-based -- Direct Stream -- Structured Streaming -- Getting deeper into Structured Streaming -- Handling event time and late date -- Fault-tolerance semantics -- Summary -- Chapter 8: Batch Analytics with Apache Flink -- Introduction to Apache Flink -- Continuous processing for unbounded datasets -- Flink, the streaming model, and bounded datasets -- Installing Flink -- Downloading Flink -- Installing Flink -- Starting a local Flink cluster -- Using the Flink cluster UI -- Batch analytics -- Reading file -- File-based -- Collection-based -- Generic -- Transformations -- GroupBy -- Aggregation -- Joins -- Inner join -- Left outer join -- Right outer join -- Full outer join -- Writing to a file -- Summary.

Chapter 9: Stream Processing with Apache Flink -- Introduction to streaming execution model -- Data processing using the DataStream API -- Execution environment -- Data sources -- Socket-based -- File-based -- Transformations -- map -- flatMap -- filter -- keyBy -- reduce -- fold -- Aggregations -- window -- Global windows -- Tumbling windows -- Sliding windows -- Session windows -- windowAll -- union -- Window join -- split -- Select -- Project -- Physical partitioning -- Custom partitioning -- Random partitioning -- Rebalancing partitioning -- Rescaling -- Broadcasting -- Event time and watermarks -- Connectors -- Kafka connector -- Twitter connector -- RabbitMQ connector -- Elasticsearch connector -- Cassandra connector -- Summary -- Chapter 10: Visualizing Big Data -- Introduction -- Tableau -- Chart types -- Line charts -- Pie chart -- Bar chart -- Heat map -- Using Python to visualize data -- Using R to visualize data -- Big data visualization tools -- Summary -- Chapter 11: Introduction to Cloud Computing -- Concepts and terminology -- Cloud -- IT resource -- On-premise -- Cloud consumers and Cloud providers -- Scaling -- Types of scaling -- Horizontal scaling -- Vertical scaling -- Cloud service -- Cloud service consumer -- Goals and benefits -- Increased scalability -- Increased availability and reliability -- Risks and challenges -- Increased security vulnerabilities -- Reduced operational governance control -- Limited portability between Cloud providers -- Roles and boundaries -- Cloud provider -- Cloud consumer -- Cloud service owner -- Cloud resource administrator -- Additional roles -- Organizational boundary -- Trust boundary -- Cloud characteristics -- On-demand usage -- Ubiquitous access -- Multi-tenancy (and resource pooling) -- Elasticity -- Measured usage -- Resiliency -- Cloud delivery models -- Infrastructure as a Service.

Platform as a Service -- Software as a Service -- Combining Cloud delivery models -- IaaS + PaaS -- IaaS + PaaS + SaaS -- Cloud deployment models -- Public Clouds -- Community Clouds -- Private Clouds -- Hybrid Clouds -- Summary -- Chapter 12: Using Amazon Web Services -- Amazon Elastic Compute Cloud -- Elastic web-scale computing -- Complete control of operations -- Flexible Cloud hosting services -- Integration -- High reliability -- Security -- Inexpensive -- Easy to start -- Instances and Amazon Machine Images -- Launching multiple instances of an AMI -- Instances -- AMIs -- Regions and availability zones -- Region and availability zone concepts -- Regions -- Availability zones -- Available regions -- Regions and endpoints -- Instance types -- Tag basics -- Amazon EC2 key pairs -- Amazon EC2 security groups for Linux instances -- Elastic IP addresses -- Amazon EC2 and Amazon Virtual Private Cloud -- Amazon Elastic Block Store -- Amazon EC2 instance store -- What is AWS Lambda? -- When should I use AWS Lambda? -- Introduction to Amazon S3 -- Getting started with Amazon S3 -- Comprehensive security and compliance capabilities -- Query in place -- Flexible management -- Most supported platform with the largest ecosystem -- Easy and flexible data transfer -- Backup and recovery -- Data archiving -- Data lakes and big data analytics -- Hybrid Cloud storage -- Cloud-native application data -- Disaster recovery -- Amazon DynamoDB -- Amazon Kinesis Data Streams -- What can I do with Kinesis Data Streams? -- Accelerated log and data feed intake and processing -- Real-time metrics and reporting -- Real-time data analytics -- Complex stream processing -- Benefits of using Kinesis Data Streams -- AWS Glue -- When should I use AWS Glue? -- Amazon EMR -- Practical AWS EMR cluster -- Summary -- Index.

Apache Hadoop is the most popular platform for big data processing to build powerful analytics solutions. This book shows you how to do just that, with the help of practical examples. You will be well-versed with the analytical capabilities of Hadoop ecosystem with Apache Spark and Apache Flink to perform big data analytics by the end of this book.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.