ORPP logo
Image from Google Jackets

Smart Antennas and Electromagnetic Signal Processing in Advanced Wireless Technology.

By: Material type: TextTextPublisher: Milton : River Publishers, 2020Copyright date: ©2020Edition: 1st edDescription: 1 online resource (450 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781000793772
Subject(s): Genre/Form: Additional physical formats: Print version:: Smart Antennas and Electromagnetic Signal Processing in Advanced Wireless TechnologyDDC classification:
  • 621.3822
LOC classification:
  • TK5102.9 .H665 2020
Online resources:
Contents:
Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- List of Contributors -- List of Figures -- List of Tables -- List of Abbreviations -- 1: Introduction -- 1.1 Elementary Principle -- 1.2 Broadcast Frequency Bands -- 1.3 Basic Characteristics and Definitions of Terms -- 1.4 Basic Antenna Parameters -- 1.4.1 Antenna as a Spatial Filter: Radiation Pattern -- 1.4.2 Antenna Gain and Beamwidth -- 1.4.3 Effective Aperture -- 1.4.4 Operation Zones -- 1.4.5 Antenna as a Temporal Filter: Bandwidth -- 1.4.6 Antenna Temperature -- 1.4.7 Antenna Input Impedance -- 1.5 Reciprocity -- 1.5.1 The Friis Transmission Equation -- 1.5.2 The Radar Equation -- 1.6 Types of Antennas -- 1.6.1 Elemental Current Antennas -- 1.6.2 Traveling Wave Antennas -- 1.6.3 Array Antennas -- 1.6.4 Aperture Antennas -- 1.7 Waves Along Conductors and in Free Space -- 1.8 Maxwell's Equations and Electromagnetic Waves -- 1.8.1 Introduction -- 1.8.2 Electromagnetic Waves -- 1.8.3 Energy in the Electromagnetic Field -- 1.9 Points to Note When Purchasing or Designing Antennas -- 1.10 Smart Antennas and Electromagnetic Signal Processing -- 2: Elementary Antenna Theory -- 2.1 Introduction -- 2.1.1 Maxwell's Equations -- 2.1.2 The Magnetic Vector Potential A for an Electric Current Source J -- 2.2 Infinitesimal Wire Antennas (Hertzian Dipole L &lt -- λ/50) -- 2.2.1 Electromagnetic Fields Radiated by a Hertzian Dipole -- 2.2.2 Electric Field Radiation Pattern of an Electric Dipole -- 2.2.2.1 The E-Plane Radiation Pattern -- 2.2.2.2 The H-Plane Radiation Pattern -- 2.3 Antenna in Motion -- 2.4 Finite Length Wire Antenna (Dipole): The Half-Wave (λ/2) Dipole -- 2.4.1 Radiation from an Electric Dipole Antenna of AnyLength L -- 2.4.2 Radiation from a Half-Wave Electric Dipole Antenna: L = λ/2 -- 2.5 Radiation Resistance.
2.6 Impedance Matching -- 2.7 Radiation Safety -- 2.8 The Effect of Antenna Height and Ground Reflection -- 2.9 Inverse Doppler Effect in the Near-Field Region -- 2.10 The Magnetic Dipole: Loop Antenna -- 2.10.1 Magnetic Field Pattern of a Magnetic Dipole -- 2.10.2 The Helical Broadband Antenna -- 2.11 Effect of Ground on Antenna Radiated Electric Fields -- 2.11.1 The Vertical Dipol -- 2.11.2 The Horizontal Dipole -- 2.12 Frequency Independent Antennas -- 3: Focused Beam Antennas -- 3.1 Introduction -- 3.2 Array Antennas: Two-Element Linear Array -- 3.2.1 Two-Element Hertzian Dipole Array Antenna -- 3.2.2 Two-Element Half-Wave Dipole Array Antenna -- 3.3 General N-Element Uniform Linear Array -- 3.4 Mutual Coupling Between Elements of The Array Antenna -- 3.5 Polarization -- 3.6 Aperture Antennas -- 3.7 Patch Microstrip Antennas -- 3.8 Corner-Reflector Antenna -- 3.9 Finite Length Antenna: A Basic Building Block for Antenna Simulation -- 4: Antenna Beamforming: Basics -- 4.1 Introduction -- 4.2 Antenna Synthesis -- 4.2.1 Line Source -- 4.2.2 Fourier Transform Method -- 4.2.2.1 Line Source -- 4.2.2.2 Linear Array -- 4.2.3 Woodward-Lawson Sampling Method -- 4.2.3.1 Line Source -- 4.2.3.2 Linear Array -- 4.3 Adaptive Arrays -- 4.3.1 LMS Adaptive Array -- 4.3.2 Two-Element Array -- 4.3.3 The LMS Weights -- 4.3.4 Complex Signal Notation -- 5: A New Smart Antenna for 5/6G Wireless Systems: Narrow 360° Steerable Beam With No Reflectors -- 5.1 Introduction -- 5.2 A Narrow Steerable Single-Beam Smart Antenna Without a Reflector -- 5.3 Adaptive Array Model and Analytical Beamforming -- 5.4 Conclusions -- 5.5 Appendix 5.1. The MATLABᵀᴹ Code -- 6: Synthetic Aperture Antennas and Imaging -- 6.1 Basic Principles of Radar Signal Processing -- 6.1.1 Introduction -- 6.1.2 Synthetic Aperture Radar -- 6.2 Inverse Synthetic Aperture Radar.
6.3 One-Dimensional Imaging with Point Scattering -- 6.3.1 Overview -- 6.3.2 Range Resolution -- 6.3.3 Effect of Pulse Width Variation -- 6.3.4 Effect of a Chirp Rate Variation -- 6.3.5 Effect of Sampling Frequency Variation -- 6.4 Two-Dimensional Imaging with Point Scattering -- 6.4.1 Overview -- 6.4.2 Procedures for Two-Dimensional Imaging -- 6.4.2.1 Data Collection -- 6.4.2.2 Concept for Two-Dimensional Imaging -- 6.4.2.3 Development and Implementation -- 6.4.3 Simulation Results -- 7: Smart Antennas: Mobile Station Antenna Location -- 7.1 Mobile Radio Environment -- 7.1.1 Fading -- 7.1.2 Doppler Spread -- 7.1.3 Delay Station Spread -- 7.2 Mobile Station Positioning -- 7.2.1 Global Positioning Satellite -- 7.2.2 MS Positioning in the Cellular Network -- 7.2.2.1 BS-Based Positioning -- 7.2.2.2 MS-Based Positioning -- 7.3 Position and Velocity Estimation in Cellular Systems -- 7.3.1 Antenna Signal Model -- 7.3.2 Position and Velocity Estimation Algorithm -- 7.3.3 Simulation Scenario -- 7.3.4 Channel Models -- 7.3.4.1 Additive White Gaussian -- 7.3.4.2 Rayleigh Fading -- 7.3.4.3 Dominant Reflected Path -- 7.3.4.3 Rician Fading -- 7.3.5 Antenna Radiation Pattern -- 7.3.6 Initial Values -- 7.3.7 E-Field Strength Measurement -- 7.3.8 Simulation Results -- 7.3.9 Error Handlers -- 8: Smart Antennas: Mobile Station (MS) and Base Station (BS) Antenna Beamforming -- 8.1 Array Antenna -- 8.2 Adaptive Algorithm -- 8.2.1 Minimum Mean Square Error Criteria -- 8.2.2 Least Mean Square Algorithm -- 8.3 Electromagnetic Model -- 8.4 Tracking and Beamforming with Position and Velocity Estimator (BFPVE) -- 8.5 Simulation Scenario -- 8.6 Channel Models -- 8.7 Antenna Radiation Pattern -- 8.8 Initial Values -- 8.9 Simulation Results -- 8.10 Handover Algorithm in Smart Antenna Systems: The Triangle Method -- 8.11 Base Station Beamforming: Position-Velocity Estimator.
8.12 Channel Model -- 8.13 Performance Evaluation -- 8.13.1 System Capacity -- 8.13.2 Loading of Antenna -- 8.13.3 Signal to Interference and Noise Ratio -- 8.13.4 Range -- 8.14 Base Station Beamforming: Simulation Studies -- 8.14.1 Simulation Scenario -- 8.14.2 Algorithm -- 8.15 Results and Discussion -- 8.15.1 BS Smart Antenna Beams -- 8.15.2 Triangle Method -- 8.15.3 Handover -- 8.15.4 BS-Based Position-Velocity Estimator -- 8.15.5 AWGN Model for Smart Antenna Systems -- 8.15.6 Performance Evaluation -- 8.15.6.1 Capacity, SIR, and Range -- 8.15.6.2 Loading of Antenna -- 9: Real- and Complex-Valued Artificial Intelligence Weight Optimization Algorithms for Smart Antennas in 5/6G Wireless Systems: Linear and Nonlinear Arrays -- 9.1 Introduction -- 9.2 Processing Element -- 9.2.1 Single-Layer Perceptron -- 9.2.2 Multi-Layer Perceptron -- 9.3 Adaptive Array Model -- 9.4 Single Neuron Weight Optimization Model -- 9.4.1 Real-Valued Neural Network -- 9.4.2 Complex-Valued Neural Network -- 9.4.3 Complex-Valued Activation Functions -- 9.4.3.1 Hyperbolic Tangent Function -- 9.4.3.2 Bipolar Sigmoid Function -- 9.4.3.3 Squash or Elliot Function -- 9.5 MATLABᵀᴹ Program -- 9.5.1 MATLABᵀᴹ Program of the SNWOM Algorithm -- 9.5.2 MATLAB Program for the Plotting the Radiation Pattern -- 10: Advanced Wireless Systems: A Comprehensive Survey -- 10.1 Introduction -- 10.2 Evolution of the Wireless Technology -- 10.2.1 The Zero Generation -- 10.2.2 The First Generation -- 10.2.3 The Second Generation -- 10.2.4 The Third Generation . -- 10.2.5 The Fourth Generation -- 10.2.6 The Fifth Generation -- 10.3 5G Architecture -- 10.3.1 Radio Network Evolution -- 10.3.2 Advanced Air Interface -- 10.3.3 Next Generation Smart Antennas -- 10.3.4 Heterogeneous Approach-HetNets -- 10.4 Physical Layer Design Issues -- 10.4.1 mm-Wave Wireless Channel Model.
10.4.2 Adaptive Beamforming -- 10.4.3 Massive MIMO Systems -- 10.5 MAC Layer Upgrading Requirements -- 10.5.1 MAC Layer Restoration to Meet the Modifications in Physical Layer -- 10.5.2 Spatial Beam Patterns -- 10.5.3 Directional MAC Protocols -- 10.5.4 Multiple Access Techniques for 5G -- 10.5.5 Other Methods -- 10.6 MIMO -- 10.6.1 Benefits of MIMO Technology -- 10.6.2 Superior Data Rates, Range, and Reliability -- 10.6.3 Other Methods Downlink MIMO -- 10.6.4 Spatial Multiplexing -- 10.6.5 Transmit Diversity -- 10.6.6 Uplink MIMO -- 10.7 Impact of 5G Wireless Systems on Human Health -- 10.8 Next Generation Wireless Systems -- 11: Emerging Technologies for 5G/6G Wireless Communication Networks -- 11.1 Introduction -- 11.2 5G Requirements -- 11.3 5G Cloud-Based Network Architecture -- 11.4 Key Technologies -- 11.4.1 Small Cell Densification -- 11.4.2 Millimeter Wave -- 11.4.3 Massive MIMO -- 11.4.4 Beamforming Mechanism -- 11.4.5 Ubiquitous Communications -- 11.4.6 Green Communications -- 11.5 Conclusion -- 12: 5/6G, Smart Antennas and Coding the Algorithms: Linear ANN, Non-Linear ANN, and LMS -- 12.1 Introduction -- 12.1.1 Evolution of Mobile Communication System -- 12.1.2 5G Technologies -- 12.1.3 5/6G, Health, and Environment -- 12.1.4 Future 6G (2030) Wireless System -- 12.1.5 Development of the Antenna System -- 12.1.6 The Goals of the Smart Antenna System -- 12.1.7 Beamforming -- 12.1.7.1 Fixed Weight Beamformer -- 12.1.7.2 Adaptive Beamformer -- 12.2 Smart antenna Using ANN -- 12.2.1 Adaptive Array Model -- 12.2.2 Single Perceptron Weight Optimization -- 12.2.3 Activation Functions -- 12.3 Smart Antenna CODES: Linear/Non-Linear ANN AND LMS -- 12.3.1 The ANN Codes: Linear and Non-Linear ANN -- 12.3.2 The Least Mean Square Code -- 12.4 Results and Discussion -- 12.4.1 Linear Array Smart Antenna -- 12.5 Non-Linear Array Results.
12.5.1 Non-Linear Array Smart Antenna.
Summary: The book presents electromagnetic signal processing techniques that both control the antenna beam and track the moving station, which is required for effective, fast, dynamic beamforming.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- List of Contributors -- List of Figures -- List of Tables -- List of Abbreviations -- 1: Introduction -- 1.1 Elementary Principle -- 1.2 Broadcast Frequency Bands -- 1.3 Basic Characteristics and Definitions of Terms -- 1.4 Basic Antenna Parameters -- 1.4.1 Antenna as a Spatial Filter: Radiation Pattern -- 1.4.2 Antenna Gain and Beamwidth -- 1.4.3 Effective Aperture -- 1.4.4 Operation Zones -- 1.4.5 Antenna as a Temporal Filter: Bandwidth -- 1.4.6 Antenna Temperature -- 1.4.7 Antenna Input Impedance -- 1.5 Reciprocity -- 1.5.1 The Friis Transmission Equation -- 1.5.2 The Radar Equation -- 1.6 Types of Antennas -- 1.6.1 Elemental Current Antennas -- 1.6.2 Traveling Wave Antennas -- 1.6.3 Array Antennas -- 1.6.4 Aperture Antennas -- 1.7 Waves Along Conductors and in Free Space -- 1.8 Maxwell's Equations and Electromagnetic Waves -- 1.8.1 Introduction -- 1.8.2 Electromagnetic Waves -- 1.8.3 Energy in the Electromagnetic Field -- 1.9 Points to Note When Purchasing or Designing Antennas -- 1.10 Smart Antennas and Electromagnetic Signal Processing -- 2: Elementary Antenna Theory -- 2.1 Introduction -- 2.1.1 Maxwell's Equations -- 2.1.2 The Magnetic Vector Potential A for an Electric Current Source J -- 2.2 Infinitesimal Wire Antennas (Hertzian Dipole L &lt -- λ/50) -- 2.2.1 Electromagnetic Fields Radiated by a Hertzian Dipole -- 2.2.2 Electric Field Radiation Pattern of an Electric Dipole -- 2.2.2.1 The E-Plane Radiation Pattern -- 2.2.2.2 The H-Plane Radiation Pattern -- 2.3 Antenna in Motion -- 2.4 Finite Length Wire Antenna (Dipole): The Half-Wave (λ/2) Dipole -- 2.4.1 Radiation from an Electric Dipole Antenna of AnyLength L -- 2.4.2 Radiation from a Half-Wave Electric Dipole Antenna: L = λ/2 -- 2.5 Radiation Resistance.

2.6 Impedance Matching -- 2.7 Radiation Safety -- 2.8 The Effect of Antenna Height and Ground Reflection -- 2.9 Inverse Doppler Effect in the Near-Field Region -- 2.10 The Magnetic Dipole: Loop Antenna -- 2.10.1 Magnetic Field Pattern of a Magnetic Dipole -- 2.10.2 The Helical Broadband Antenna -- 2.11 Effect of Ground on Antenna Radiated Electric Fields -- 2.11.1 The Vertical Dipol -- 2.11.2 The Horizontal Dipole -- 2.12 Frequency Independent Antennas -- 3: Focused Beam Antennas -- 3.1 Introduction -- 3.2 Array Antennas: Two-Element Linear Array -- 3.2.1 Two-Element Hertzian Dipole Array Antenna -- 3.2.2 Two-Element Half-Wave Dipole Array Antenna -- 3.3 General N-Element Uniform Linear Array -- 3.4 Mutual Coupling Between Elements of The Array Antenna -- 3.5 Polarization -- 3.6 Aperture Antennas -- 3.7 Patch Microstrip Antennas -- 3.8 Corner-Reflector Antenna -- 3.9 Finite Length Antenna: A Basic Building Block for Antenna Simulation -- 4: Antenna Beamforming: Basics -- 4.1 Introduction -- 4.2 Antenna Synthesis -- 4.2.1 Line Source -- 4.2.2 Fourier Transform Method -- 4.2.2.1 Line Source -- 4.2.2.2 Linear Array -- 4.2.3 Woodward-Lawson Sampling Method -- 4.2.3.1 Line Source -- 4.2.3.2 Linear Array -- 4.3 Adaptive Arrays -- 4.3.1 LMS Adaptive Array -- 4.3.2 Two-Element Array -- 4.3.3 The LMS Weights -- 4.3.4 Complex Signal Notation -- 5: A New Smart Antenna for 5/6G Wireless Systems: Narrow 360° Steerable Beam With No Reflectors -- 5.1 Introduction -- 5.2 A Narrow Steerable Single-Beam Smart Antenna Without a Reflector -- 5.3 Adaptive Array Model and Analytical Beamforming -- 5.4 Conclusions -- 5.5 Appendix 5.1. The MATLABᵀᴹ Code -- 6: Synthetic Aperture Antennas and Imaging -- 6.1 Basic Principles of Radar Signal Processing -- 6.1.1 Introduction -- 6.1.2 Synthetic Aperture Radar -- 6.2 Inverse Synthetic Aperture Radar.

6.3 One-Dimensional Imaging with Point Scattering -- 6.3.1 Overview -- 6.3.2 Range Resolution -- 6.3.3 Effect of Pulse Width Variation -- 6.3.4 Effect of a Chirp Rate Variation -- 6.3.5 Effect of Sampling Frequency Variation -- 6.4 Two-Dimensional Imaging with Point Scattering -- 6.4.1 Overview -- 6.4.2 Procedures for Two-Dimensional Imaging -- 6.4.2.1 Data Collection -- 6.4.2.2 Concept for Two-Dimensional Imaging -- 6.4.2.3 Development and Implementation -- 6.4.3 Simulation Results -- 7: Smart Antennas: Mobile Station Antenna Location -- 7.1 Mobile Radio Environment -- 7.1.1 Fading -- 7.1.2 Doppler Spread -- 7.1.3 Delay Station Spread -- 7.2 Mobile Station Positioning -- 7.2.1 Global Positioning Satellite -- 7.2.2 MS Positioning in the Cellular Network -- 7.2.2.1 BS-Based Positioning -- 7.2.2.2 MS-Based Positioning -- 7.3 Position and Velocity Estimation in Cellular Systems -- 7.3.1 Antenna Signal Model -- 7.3.2 Position and Velocity Estimation Algorithm -- 7.3.3 Simulation Scenario -- 7.3.4 Channel Models -- 7.3.4.1 Additive White Gaussian -- 7.3.4.2 Rayleigh Fading -- 7.3.4.3 Dominant Reflected Path -- 7.3.4.3 Rician Fading -- 7.3.5 Antenna Radiation Pattern -- 7.3.6 Initial Values -- 7.3.7 E-Field Strength Measurement -- 7.3.8 Simulation Results -- 7.3.9 Error Handlers -- 8: Smart Antennas: Mobile Station (MS) and Base Station (BS) Antenna Beamforming -- 8.1 Array Antenna -- 8.2 Adaptive Algorithm -- 8.2.1 Minimum Mean Square Error Criteria -- 8.2.2 Least Mean Square Algorithm -- 8.3 Electromagnetic Model -- 8.4 Tracking and Beamforming with Position and Velocity Estimator (BFPVE) -- 8.5 Simulation Scenario -- 8.6 Channel Models -- 8.7 Antenna Radiation Pattern -- 8.8 Initial Values -- 8.9 Simulation Results -- 8.10 Handover Algorithm in Smart Antenna Systems: The Triangle Method -- 8.11 Base Station Beamforming: Position-Velocity Estimator.

8.12 Channel Model -- 8.13 Performance Evaluation -- 8.13.1 System Capacity -- 8.13.2 Loading of Antenna -- 8.13.3 Signal to Interference and Noise Ratio -- 8.13.4 Range -- 8.14 Base Station Beamforming: Simulation Studies -- 8.14.1 Simulation Scenario -- 8.14.2 Algorithm -- 8.15 Results and Discussion -- 8.15.1 BS Smart Antenna Beams -- 8.15.2 Triangle Method -- 8.15.3 Handover -- 8.15.4 BS-Based Position-Velocity Estimator -- 8.15.5 AWGN Model for Smart Antenna Systems -- 8.15.6 Performance Evaluation -- 8.15.6.1 Capacity, SIR, and Range -- 8.15.6.2 Loading of Antenna -- 9: Real- and Complex-Valued Artificial Intelligence Weight Optimization Algorithms for Smart Antennas in 5/6G Wireless Systems: Linear and Nonlinear Arrays -- 9.1 Introduction -- 9.2 Processing Element -- 9.2.1 Single-Layer Perceptron -- 9.2.2 Multi-Layer Perceptron -- 9.3 Adaptive Array Model -- 9.4 Single Neuron Weight Optimization Model -- 9.4.1 Real-Valued Neural Network -- 9.4.2 Complex-Valued Neural Network -- 9.4.3 Complex-Valued Activation Functions -- 9.4.3.1 Hyperbolic Tangent Function -- 9.4.3.2 Bipolar Sigmoid Function -- 9.4.3.3 Squash or Elliot Function -- 9.5 MATLABᵀᴹ Program -- 9.5.1 MATLABᵀᴹ Program of the SNWOM Algorithm -- 9.5.2 MATLAB Program for the Plotting the Radiation Pattern -- 10: Advanced Wireless Systems: A Comprehensive Survey -- 10.1 Introduction -- 10.2 Evolution of the Wireless Technology -- 10.2.1 The Zero Generation -- 10.2.2 The First Generation -- 10.2.3 The Second Generation -- 10.2.4 The Third Generation . -- 10.2.5 The Fourth Generation -- 10.2.6 The Fifth Generation -- 10.3 5G Architecture -- 10.3.1 Radio Network Evolution -- 10.3.2 Advanced Air Interface -- 10.3.3 Next Generation Smart Antennas -- 10.3.4 Heterogeneous Approach-HetNets -- 10.4 Physical Layer Design Issues -- 10.4.1 mm-Wave Wireless Channel Model.

10.4.2 Adaptive Beamforming -- 10.4.3 Massive MIMO Systems -- 10.5 MAC Layer Upgrading Requirements -- 10.5.1 MAC Layer Restoration to Meet the Modifications in Physical Layer -- 10.5.2 Spatial Beam Patterns -- 10.5.3 Directional MAC Protocols -- 10.5.4 Multiple Access Techniques for 5G -- 10.5.5 Other Methods -- 10.6 MIMO -- 10.6.1 Benefits of MIMO Technology -- 10.6.2 Superior Data Rates, Range, and Reliability -- 10.6.3 Other Methods Downlink MIMO -- 10.6.4 Spatial Multiplexing -- 10.6.5 Transmit Diversity -- 10.6.6 Uplink MIMO -- 10.7 Impact of 5G Wireless Systems on Human Health -- 10.8 Next Generation Wireless Systems -- 11: Emerging Technologies for 5G/6G Wireless Communication Networks -- 11.1 Introduction -- 11.2 5G Requirements -- 11.3 5G Cloud-Based Network Architecture -- 11.4 Key Technologies -- 11.4.1 Small Cell Densification -- 11.4.2 Millimeter Wave -- 11.4.3 Massive MIMO -- 11.4.4 Beamforming Mechanism -- 11.4.5 Ubiquitous Communications -- 11.4.6 Green Communications -- 11.5 Conclusion -- 12: 5/6G, Smart Antennas and Coding the Algorithms: Linear ANN, Non-Linear ANN, and LMS -- 12.1 Introduction -- 12.1.1 Evolution of Mobile Communication System -- 12.1.2 5G Technologies -- 12.1.3 5/6G, Health, and Environment -- 12.1.4 Future 6G (2030) Wireless System -- 12.1.5 Development of the Antenna System -- 12.1.6 The Goals of the Smart Antenna System -- 12.1.7 Beamforming -- 12.1.7.1 Fixed Weight Beamformer -- 12.1.7.2 Adaptive Beamformer -- 12.2 Smart antenna Using ANN -- 12.2.1 Adaptive Array Model -- 12.2.2 Single Perceptron Weight Optimization -- 12.2.3 Activation Functions -- 12.3 Smart Antenna CODES: Linear/Non-Linear ANN AND LMS -- 12.3.1 The ANN Codes: Linear and Non-Linear ANN -- 12.3.2 The Least Mean Square Code -- 12.4 Results and Discussion -- 12.4.1 Linear Array Smart Antenna -- 12.5 Non-Linear Array Results.

12.5.1 Non-Linear Array Smart Antenna.

The book presents electromagnetic signal processing techniques that both control the antenna beam and track the moving station, which is required for effective, fast, dynamic beamforming.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.