Process Intensification and Integration for Sustainable Design.
Material type:
- text
- computer
- online resource
- 9783527818723
- 658.5
- TP155 .P763 2021
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Shale Gas as an Option for the Production of Chemicals and Challenges for Process Intensification -- 1.1 Introduction -- 1.2 Where Is It Found? -- 1.3 Shale Gas Composition -- 1.4 Shale Gas Effect on Natural Gas Prices -- 1.5 Alternatives to Produce Chemicals from Shale Gas -- 1.6 Synthesis Gas -- 1.7 Methanol -- 1.8 Ethylene -- 1.9 Benzene -- 1.10 Propylene -- 1.11 Process Intensification Opportunities -- 1.12 Potential Benefits and Tradeoffs Associated with Process Intensification -- 1.13 Conclusions -- References -- Chapter 2 Design and Techno‐Economic Analysis of Separation Units to Handle Feedstock Variability in Shale Gas Treatment -- 2.1 Introduction -- 2.2 Problem Statement -- 2.3 Methodology -- 2.4 Case Study -- 2.4.1 Data -- 2.4.2 Process Simulations and Economic Evaluation -- 2.4.2.1 Changes in Fixed and Variable Costs -- 2.4.2.2 Revenue -- 2.4.2.3 Economic Calculations -- 2.4.3 Safety Index Calculations -- 2.5 Discussion -- 2.5.1 Process Simulations -- 2.5.1.1 Dehydration Process -- 2.5.1.2 NGL Recovery Process -- 2.5.1.3 Fractionation Train -- 2.5.1.4 Acid Gas Removal -- 2.5.2 Profitability Assessment -- 2.5.3 High Acid Gas Case Economics -- 2.5.4 Safety Index Results -- 2.5.5 Sensitivity Analysis -- 2.5.5.1 Heating Value Cases -- 2.5.5.2 NGL Price Cases -- 2.6 Conclusions -- Appendices -- References -- Chapter 3 Sustainable Design and Model‐Based Optimization of Hybrid RO-PRO Desalination Process -- 3.1 Introduction -- 3.2 Unit Model Description and Hybrid Process Design -- 3.2.1 The Process Description -- 3.2.2 Unit Model and Performance Metrics -- 3.2.2.1 RO Unit Model -- 3.2.2.2 PRO Unit Model -- 3.2.3 The RO-PRO Hybrid Processes -- 3.2.3.1 Open‐Loop Configuration -- 3.2.3.2 Closed‐Loop Configuration -- 3.3 Unified Model‐Based Analysis and Optimization.
3.3.1 Dimensionless Mathematical Modeling -- 3.3.2 Mathematical Model and Objectives -- 3.3.3 Optimization Results and Comparative Analysis -- 3.4 Conclusion -- Nomenclature -- References -- Chapter 4 Techno‐economic and Environmental Assessment of Ultrathin Polysulfone Membranes for Oxygen‐Enriched Combustion -- 4.1 Introduction -- 4.2 Numerical Methodology for Membrane Gas Separation Design -- 4.3 Methodology -- 4.3.1 Simulation and Elucidation of Mixed Gas Transport Properties of Ultrathin PSF Membranes (Molecular Scale) -- 4.3.2 Simulation of Mathematical Model Interfaced in Aspen HYSYS for Mass and Heat Balance (Mesoscale) -- 4.3.3 Design of Oxygen‐Enriched Combustion Using Ultrathin PSF Membranes -- 4.4 Results and Discussion -- 4.4.1 Simulation and Elucidation of Mixed Gas Transport Properties of Ultrathin PSF Membranes (Molecular) -- 4.4.2 Simulation of Mathematical Model Interfaced in Aspen HYSYS for Mass and Heat Balance (Mesoscale) -- 4.4.3 Design of Oxygen‐Enriched Combustion Using Ultrathin PSF Membranes -- 4.4.3.1 Membrane Area Requirement -- 4.4.3.2 Compressor Power Requirement -- 4.4.3.3 Turbine Power Requirement -- 4.4.3.4 Economic Parameter -- 4.5 Conclusion -- Acknowledgment -- References -- Chapter 5 Process Intensification of Membrane‐Based Systems for Water, Energy, and Environment Applications -- 5.1 Introduction -- 5.2 Membrane Electrocoagulation Flocculation for Dye Removal -- 5.3 Carbonation Bioreactor for Microalgae Cultivation -- 5.4 Forward Osmosis and Electrolysis for Energy Storage and Treatment of Emerging Pollutant -- 5.5 Conclusions and Future Perspective -- References -- Chapter 6 Design of Internally Heat‐Integrated Distillation Column (HIDiC) -- 6.1 Introduction -- 6.2 Example and Conceptual Design of Conventional Column -- 6.3 Basic Design of HIDiC -- 6.4 Complete Design of HIDiC -- 6.4.1 Top‐Integrated Column.
6.4.2 Bottom‐Integrated Column -- 6.4.3 Geometrical Analysis for Heat Panels -- 6.5 Energy Savings and Economic Evaluation -- 6.6 Concluding Thoughts -- References -- Chapter 7 Graphical Analysis and Integration of Heat Exchanger Networks with Heat Pumps -- 7.1 Introduction -- 7.2 Influences of Heat Pumps on HENs -- 7.2.1 Case 1 -- 7.2.2 Case 2 -- 7.2.3 Case 3 -- 7.2.4 Case 4 -- 7.2.5 Case 5 -- 7.2.6 Case 6 -- 7.2.7 Case 7 -- 7.3 Integration of Heat Pump Assisted Distillation in the Overall Process -- 7.3.1 Increase of Pinch Temperature -- 7.3.2 Decrease of Pinch Temperature -- 7.3.3 No Change in Pinch Temperature -- 7.3.4 Heat Pump Placement -- 7.4 Case Study -- 7.5 Conclusion -- References -- Chapter 8 Insightful Analysis and Integration of Reactor and Heat Exchanger Network -- 8.1 Introduction -- 8.2 Influence of Temperature Variation on HEN -- 8.2.1 Location of Cold and Hot Streams -- 8.2.2 Effect of Temperature Variation -- 8.3 Relation Among Reactor Parameters -- 8.3.1 Relation Among Temperatures, Selectivity, and Conversion of Reactor -- 8.3.1.1 CSTR -- 8.3.1.2 PFR -- 8.3.2 Reactor Characteristic Diagram -- 8.4 Coupling Optimization of HEN and Reactor -- 8.5 Case Study -- 8.6 Conclusions -- References -- Chapter 9 Fouling Mitigation in Heat Exchanger Network Through Process Optimization -- 9.1 Introduction -- 9.2 Operation Parameter Optimization for Fouling Mitigation in HENs -- 9.2.1 Description on Velocity Optimization -- 9.2.2 Fouling Threshold Model -- 9.2.3 Heat Transfer Related Models -- 9.2.4 Pressure Drop Related Models -- 9.3 Optimization of Cleaning Schedule -- 9.4 Application of Backup Heat Exchangers -- 9.5 Optimization Constraints and Objective Function -- 9.5.1 Optimization Constraints -- 9.5.2 Objective Function -- 9.5.3 Optimization Algorithm -- 9.6 Case Studies.
9.6.1 Case Study 1: Consideration of Velocity Optimization Alone -- 9.6.1.1 Optimization Results -- 9.6.2 Case Study 2: Simultaneous Consideration of Velocity and Cleaning Schedule Optimization -- 9.6.2.1 Constraints for Case Study -- 9.6.2.2 Results and Discussion -- 9.6.2.3 Considering Backup Heat Exchanger -- 9.7 Conclusion -- Acknowledgments -- References -- Chapter 10 Decomposition and Implementation of Large‐Scale Interplant Heat Integration -- 10.1 Introduction -- 10.1.1 Reviews and Discussions for Stream Selection -- 10.1.2 Reviews and Discussions for Plant Selection -- 10.1.3 Reviews and Discussions for Plant Integration -- 10.2 Methodology -- 10.2.1 Strategy 1 - Overview -- 10.2.2 Identification of Heat Sources/Sinks for IPHI from Individual Plants -- 10.2.3 Decomposition of a Large‐Scale IPHI Problem into Small‐Scale Subsections -- 10.2.4 Strategy 2 for Indirect IPHI -- 10.3 Case Study -- 10.3.1 Example 1 -- 10.3.2 Example 2 -- 10.4 Conclusion -- References -- 11 Multi‐objective Optimisation of Integrated Heat, Mass and Regeneration Networks with Renewables Considering Economics and Environmental Impact -- 11.1 Introduction -- 11.2 Literature Review -- 11.2.1 Regeneration in Process Synthesis -- 11.2.2 The Analogy of MEN and REN -- 11.2.3 Combined Heat and Mass Exchange Networks (CHAMENs) -- 11.3 Environmental Impact in Process Synthesis -- 11.3.1 Life Cycle Assessment -- 11.4 The Synthesis Method and Model Formulation -- 11.4.1 Synthesis Approach -- 11.4.2 Assumptions -- 11.4.3 MINLP Model Formulation -- 11.4.3.1 HENS Model Equations -- 11.4.3.2 MEN and REN Model Equations -- 11.4.3.3 The Combined Economic Objective Function -- 11.4.3.4 Initializations and Convergence -- 11.5 Case Study -- 11.5.1 H2S Removal -- 11.5.1.1 Synthesis of MEN (The First Step) -- 11.5.1.2 Simultaneous Synthesis of MEN and REN (The Second Step).
11.5.1.3 Simultaneous Synthesis of MEN, REN, and HEN (The Third Step) -- 11.5.1.4 Absorption and Regeneration Temperature Optimization -- 11.5.1.5 The Synthesis of Combined Model Using MOO -- 11.6 Conclusions and Future Works -- References -- Chapter 12 Optimization of Integrated Water and Multi‐regenerator Membrane Systems Involving Multi‐contaminants: A Water‐Energy Nexus Aspect -- 12.1 Introduction -- 12.2 Problem Statement -- 12.3 Model Formulation -- 12.3.1 Material Balances for Sources -- 12.3.2 Mass and Contaminants Balances for Regeneration Units -- 12.3.3 Mass and Contaminant Balances for Permeate and Reject Streams -- 12.3.4 Mass and Contaminant Balances for Sinks -- 12.3.5 Modeling of the Regeneration Units -- 12.3.5.1 Performance of Regeneration Units -- 12.3.6 Logical Constraints -- 12.3.7 The Objective Function -- 12.4 Illustrative Example -- 12.5 Conclusion -- Acknowledgments -- 12.A Electrodialysis Membrane Regeneration Unit -- 12.A.1 Electrodialysis Membrane Regeneration Unit -- 12.A.1.1 Electric Current -- 12.A.1.2 Stack Design Considerations -- 12.A.1.3 Energy Requirement -- 12.A.1.4 Material Balances -- 12.A.2 Reverse Osmosis Membrane Regenerator Formulation -- 12.A.2.1 Membrane Transport Equations -- 12.A.2.2 Average Shell Side Concentration -- 12.A.2.3 Trans-Membrane Pressure -- 12.A.2.4 Power Across the RON -- 12.A.2.5 Average Concentration on the Feed Side -- 12.A.2.6 Permeate Flowrate -- Nomenclature -- References -- Chapter 13 Optimization Strategies for Integrating and Intensifying Housing Complexes -- 13.1 Introduction -- 13.2 Methods -- 13.2.1 Total Annual Cost for the Integrated System -- 13.2.2 Fresh Water Consumption -- 13.2.3 GHGE Emissions -- 13.2.4 Environmental Impact -- 13.2.5 Sustainability Return of Investment -- 13.2.6 Process Route Healthiness Index -- 13.2.7 Multistakeholder Approach -- 13.3 Case Study.
13.4 Results.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.