ORPP logo
Image from Google Jackets

Electronic Conduction : Classical and Quantum Theory to Nanoelectronic Devices.

By: Material type: TextTextSeries: Textbook Series in Physical Sciences SeriesPublisher: Milton : Taylor & Francis Group, 2020Copyright date: ©2020Edition: 1st edDescription: 1 online resource (311 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780429014345
Subject(s): Genre/Form: Additional physical formats: Print version:: Electronic ConductionDDC classification:
  • 537.62
LOC classification:
  • QC610.4 .X368 2021
Online resources:
Contents:
Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- About the Author -- PART I: Prerequisites: Quantum Mechanics and the Electronic States in Solids -- CHAPTER 1: Quantum Mechanics -- 1.1. THE TWO-SLIT EXPERIMENT -- 1.2. THE SCHROEDINGER EQUATION, WAVEFUNCTIONS AND OPERATORS -- 1.3. PARTICLE IN A RECTANGULAR BOX -- 1.4. MORE QUANTUM MECHANICS, HEISENBERG'S UNCERTAINTY PRINCIPLE -- 1.5. STATISTICS OF ELECTRON OCCUPANCY, THE PAULI PRINCIPLE AND THE FERMI - DIRAC DISTRIBUTION -- 1.6. THE HYDROGEN ATOM AND THE ATOMS OF THE PERIODIC TABLE -- 1.7. BARRIER PENETRATION, TUNNELLING -- 1.8. PROBABILITY CURRENT DENSITY AND THE WKB APPROXIMATION -- CHAPTER 2: Electron States in Solids -- 2.1. QUALITATIVE DESCRIPTION OF SOLIDS AND THEIR ENERGY BANDS -- 2.2. THE k-SPACE, BLOCH'S THEOREM AND BRILLOUIN ZONES -- 2.3. THE LCAO METHOD OF CALCULATING ENERGY LEVELS -- 2.4. QUICK REVISION OF THE CONCEPT OF A HOLE AND DOPING -- 2.5. VELOCITY OF ELECTRONS IN SOLIDS -- 2.6. THE CONCEPT OF EFFECTIVE MASS -- 2.7. CONCENTRATION OF CARRIERS IN SEMICONDUCTORS AND METALS -- 2.8. THE EFFECTIVE MASS EQUATION -- PART II: Theory of Conduction -- CHAPTER 3: Simple Classical Theory of Conduction -- 3.1. EXTERNAL VOLTAGES AND FERMI LEVELS -- 3.2. COLLISIONS AND DRIFT MOBILITY -- 3.3. MECHANISMS OF SCATTERING -- 3.4. RECOMBINATION OF CARRIERS -- 3.5. DIFFUSION CURRENT -- 3.6. CONTINUITY EQUATIONS -- 3.7. THE IDEAL PN JUNCTION AT EQUILIBRIUM -- 3.8. THE IDEAL PN JUNCTION UNDER BIAS -- 3.9. THE NON-IDEAL, REAL PN JUNCTION -- 3.10. THE METAL-SEMICONDUCTOR OR SCHOTTKY JUNCTION -- CHAPTER 4: Advanced Classical Theory of Conduction -- 4.1. THE NEED FOR A BETTER CLASSICAL THEORY OF CONDUCTION -- 4.2. THE BOLTZMANN EQUATION -- 4.3. SOLUTION OF THE BOLTZMANN EQUATION BY THE RELAXATION TIME APPROXIMATION.
4.4. APPLICATION OF AN ELECTRIC FIELD-CONDUCTIVITY OF SOLIDS -- 4.5. DIFFUSION CURRENTS -- 4.6. GENERAL EXPRESSION FOR THE CURRENT DENSITY -- 4.7. APPLICATION OF A THERMAL GRADIENT, THE SEEBECK EFFECT -- 4.8. SATURATION OF DRIFT VELOCITY -- 4.9. GUNN EFFECT AND VELOCITY OVERSHOOT -- 4.10. THE (CLASSICAL) HALL EFFECT -- CHAPTER 5: The Quantum Theory of Conduction -- 5.1. CRITIQUE OF THE BOLTZMANN EQUATION, REGIMES OF CONDUCTION -- 5.2. ELECTRONIC STRUCTURE OF LOW-DIMENSIONAL SYSTEMS -- 5.3. THE LANDAUER FORMALISM -- 5.4. THE EFFECTIVE MASS EQUATION FOR HETEROSTRUCTURES -- 5.5. TRANSMISSION MATRICES, AIRY FUNCTIONS -- 5.6. THE RESONANT TUNNELLING DIODE OR RTD -- PART III: Devices -- CHAPTER 6: Field Emission and Vacuum Devices -- 6.1. INTRODUCTION -- 6.2. THE 1-DIMENSIONAL WKB EQUATION -- 6.3. FIELD EMISSION FROM PLANAR SURFACES -- 6.4. THE 3-DIMENSIONAL WKB PROBLEM -- 6.5. FIELD EMISSION FROM CURVED SURFACES (ELECTRON GUNS) -- 6.6. THE VACUUM TRANSISTOR -- CHAPTER 7: The MOSFET -- 7.1. INTRODUCTION -- 7.2. PRINCIPLE OF OPERATION OF THE MOSFET -- 7.3. SIMPLE CLASSICAL THEORY -- 7.4. ADVANCED CLASSICAL THEORY -- 7.5. QUANTUM THEORY OF THE MOSFET -- 7.6. TIME-DEPENDENT PERFORMANCE AND MOORE'S LAW -- 7.7. THE FINFET, A 3-DIMENSIONAL MOSFET -- CHAPTER 8: Post-Si FETs -- 8.1. INTRODUCTION -- 8.2. SIMPLE THEORY OF THE HEMT -- 8.3. ADVANCED THEORY OF THE HEMT -- 8.4. THE III-V MOSFET -- 8.5. THE CARBON NANOTUBE FET, CNFET, OR CNTFET -- APPENDIX A: Further Development of Quantum Mechanics, Angular Momentum, and Spin of the Electron -- APPENDIX B: Lattice Vibrations -- APPENDIX C: Impurity States in Semiconductors -- APPENDIX D: Direct and Indirect Band-Gap and Optical Transitions -- APPENDIX E: Proof of the Field Emission Formula -- BIBLIOGRAPHY -- INDEX.
Summary: This book provides a concise, complete introduction to the fundamental principles of electronic conduction in microelectronic and nanoelectronic devices, with an emphasis on integrating the quantum aspects of conduction.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- About the Author -- PART I: Prerequisites: Quantum Mechanics and the Electronic States in Solids -- CHAPTER 1: Quantum Mechanics -- 1.1. THE TWO-SLIT EXPERIMENT -- 1.2. THE SCHROEDINGER EQUATION, WAVEFUNCTIONS AND OPERATORS -- 1.3. PARTICLE IN A RECTANGULAR BOX -- 1.4. MORE QUANTUM MECHANICS, HEISENBERG'S UNCERTAINTY PRINCIPLE -- 1.5. STATISTICS OF ELECTRON OCCUPANCY, THE PAULI PRINCIPLE AND THE FERMI - DIRAC DISTRIBUTION -- 1.6. THE HYDROGEN ATOM AND THE ATOMS OF THE PERIODIC TABLE -- 1.7. BARRIER PENETRATION, TUNNELLING -- 1.8. PROBABILITY CURRENT DENSITY AND THE WKB APPROXIMATION -- CHAPTER 2: Electron States in Solids -- 2.1. QUALITATIVE DESCRIPTION OF SOLIDS AND THEIR ENERGY BANDS -- 2.2. THE k-SPACE, BLOCH'S THEOREM AND BRILLOUIN ZONES -- 2.3. THE LCAO METHOD OF CALCULATING ENERGY LEVELS -- 2.4. QUICK REVISION OF THE CONCEPT OF A HOLE AND DOPING -- 2.5. VELOCITY OF ELECTRONS IN SOLIDS -- 2.6. THE CONCEPT OF EFFECTIVE MASS -- 2.7. CONCENTRATION OF CARRIERS IN SEMICONDUCTORS AND METALS -- 2.8. THE EFFECTIVE MASS EQUATION -- PART II: Theory of Conduction -- CHAPTER 3: Simple Classical Theory of Conduction -- 3.1. EXTERNAL VOLTAGES AND FERMI LEVELS -- 3.2. COLLISIONS AND DRIFT MOBILITY -- 3.3. MECHANISMS OF SCATTERING -- 3.4. RECOMBINATION OF CARRIERS -- 3.5. DIFFUSION CURRENT -- 3.6. CONTINUITY EQUATIONS -- 3.7. THE IDEAL PN JUNCTION AT EQUILIBRIUM -- 3.8. THE IDEAL PN JUNCTION UNDER BIAS -- 3.9. THE NON-IDEAL, REAL PN JUNCTION -- 3.10. THE METAL-SEMICONDUCTOR OR SCHOTTKY JUNCTION -- CHAPTER 4: Advanced Classical Theory of Conduction -- 4.1. THE NEED FOR A BETTER CLASSICAL THEORY OF CONDUCTION -- 4.2. THE BOLTZMANN EQUATION -- 4.3. SOLUTION OF THE BOLTZMANN EQUATION BY THE RELAXATION TIME APPROXIMATION.

4.4. APPLICATION OF AN ELECTRIC FIELD-CONDUCTIVITY OF SOLIDS -- 4.5. DIFFUSION CURRENTS -- 4.6. GENERAL EXPRESSION FOR THE CURRENT DENSITY -- 4.7. APPLICATION OF A THERMAL GRADIENT, THE SEEBECK EFFECT -- 4.8. SATURATION OF DRIFT VELOCITY -- 4.9. GUNN EFFECT AND VELOCITY OVERSHOOT -- 4.10. THE (CLASSICAL) HALL EFFECT -- CHAPTER 5: The Quantum Theory of Conduction -- 5.1. CRITIQUE OF THE BOLTZMANN EQUATION, REGIMES OF CONDUCTION -- 5.2. ELECTRONIC STRUCTURE OF LOW-DIMENSIONAL SYSTEMS -- 5.3. THE LANDAUER FORMALISM -- 5.4. THE EFFECTIVE MASS EQUATION FOR HETEROSTRUCTURES -- 5.5. TRANSMISSION MATRICES, AIRY FUNCTIONS -- 5.6. THE RESONANT TUNNELLING DIODE OR RTD -- PART III: Devices -- CHAPTER 6: Field Emission and Vacuum Devices -- 6.1. INTRODUCTION -- 6.2. THE 1-DIMENSIONAL WKB EQUATION -- 6.3. FIELD EMISSION FROM PLANAR SURFACES -- 6.4. THE 3-DIMENSIONAL WKB PROBLEM -- 6.5. FIELD EMISSION FROM CURVED SURFACES (ELECTRON GUNS) -- 6.6. THE VACUUM TRANSISTOR -- CHAPTER 7: The MOSFET -- 7.1. INTRODUCTION -- 7.2. PRINCIPLE OF OPERATION OF THE MOSFET -- 7.3. SIMPLE CLASSICAL THEORY -- 7.4. ADVANCED CLASSICAL THEORY -- 7.5. QUANTUM THEORY OF THE MOSFET -- 7.6. TIME-DEPENDENT PERFORMANCE AND MOORE'S LAW -- 7.7. THE FINFET, A 3-DIMENSIONAL MOSFET -- CHAPTER 8: Post-Si FETs -- 8.1. INTRODUCTION -- 8.2. SIMPLE THEORY OF THE HEMT -- 8.3. ADVANCED THEORY OF THE HEMT -- 8.4. THE III-V MOSFET -- 8.5. THE CARBON NANOTUBE FET, CNFET, OR CNTFET -- APPENDIX A: Further Development of Quantum Mechanics, Angular Momentum, and Spin of the Electron -- APPENDIX B: Lattice Vibrations -- APPENDIX C: Impurity States in Semiconductors -- APPENDIX D: Direct and Indirect Band-Gap and Optical Transitions -- APPENDIX E: Proof of the Field Emission Formula -- BIBLIOGRAPHY -- INDEX.

This book provides a concise, complete introduction to the fundamental principles of electronic conduction in microelectronic and nanoelectronic devices, with an emphasis on integrating the quantum aspects of conduction.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.