ORPP logo
Image from Google Jackets

Genetic Algorithm Essentials.

By: Material type: TextTextSeries: Studies in Computational Intelligence SeriesPublisher: Cham : Springer International Publishing AG, 2017Copyright date: ©2017Edition: 1st edDescription: 1 online resource (94 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319521565
Subject(s): Genre/Form: Additional physical formats: Print version:: Genetic Algorithm EssentialsDDC classification:
  • 519.7
LOC classification:
  • Q342
Online resources:
Contents:
Intro -- Contents -- Abstract -- Foundations -- 1 Introduction -- 1.1 Optimization -- 1.2 From Biology to Genetic Algorithms -- 1.3 Genetic Algorithm Variants -- 1.4 Related Optimization Heuristics -- 1.5 This Book -- 1.6 Further Remarks -- 2 Genetic Algorithms -- 2.1 Introduction -- 2.2 Basic Genetic Algorithm -- 2.3 Crossover -- 2.4 Mutation -- 2.5 Genotype-Phenotype Mapping -- 2.6 Fitness -- 2.7 Selection -- 2.8 Termination -- 2.9 Experiments -- 2.10 Summary -- 3 Parameters -- 3.1 Introduction -- 3.2 Parameter Tuning -- 3.3 Meta-Genetic Algorithm -- 3.4 Deterministic Control -- 3.5 Rechenberg -- 3.6 Self-adaptation -- 3.7 Summary -- Solution Spaces -- 4 Multimodality -- 4.1 Introduction -- 4.2 Restarts -- 4.3 Fitness Sharing -- 4.4 Novelty Search -- 4.5 Niching -- 4.6 Summary -- 5 Constraints -- 5.1 Introduction -- 5.2 Constraints -- 5.3 Death Penalty -- 5.4 Penalty Functions -- 5.5 Repair -- 5.6 Decoders -- 5.7 Premature Stagnation -- 5.8 Summary -- 6 Multiple Objectives -- 6.1 Introduction -- 6.2 Multi-objective Optimization -- 6.3 Non-dominated Sorting -- 6.4 Crowding Distance -- 6.5 Rakes -- 6.6 Hypervolume Indicator -- 6.7 Summary -- Advanced Concepts -- 7 Theory -- 7.1 Introduction -- 7.2 Runtime Analysis -- 7.3 Markov Chains -- 7.4 Progress Rates -- 7.5 No Free Lunch -- 7.6 Schema Theorem -- 7.7 Building Block Hypothesis -- 7.8 Summary -- 8 Machine Learning -- 8.1 Introduction -- 8.2 Covariance Matrix Estimation -- 8.3 Fitness Surrogates -- 8.4 Constraint Surrogates -- 8.5 Dimensionality Reduction for Visualization -- 8.6 Summary -- 9 Applications -- 9.1 Introduction -- 9.2 Unsupervised Regression -- 9.3 Balancing Ensembles -- 9.4 Feature Tuning -- 9.5 Wind Turbine Placement -- 9.6 Virtual Power Plants -- 9.7 Summary -- Ending -- 10 Summary and Outlook -- 10.1 Summary -- 10.2 Outlook -- Appendix References -- Index.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Abstract -- Foundations -- 1 Introduction -- 1.1 Optimization -- 1.2 From Biology to Genetic Algorithms -- 1.3 Genetic Algorithm Variants -- 1.4 Related Optimization Heuristics -- 1.5 This Book -- 1.6 Further Remarks -- 2 Genetic Algorithms -- 2.1 Introduction -- 2.2 Basic Genetic Algorithm -- 2.3 Crossover -- 2.4 Mutation -- 2.5 Genotype-Phenotype Mapping -- 2.6 Fitness -- 2.7 Selection -- 2.8 Termination -- 2.9 Experiments -- 2.10 Summary -- 3 Parameters -- 3.1 Introduction -- 3.2 Parameter Tuning -- 3.3 Meta-Genetic Algorithm -- 3.4 Deterministic Control -- 3.5 Rechenberg -- 3.6 Self-adaptation -- 3.7 Summary -- Solution Spaces -- 4 Multimodality -- 4.1 Introduction -- 4.2 Restarts -- 4.3 Fitness Sharing -- 4.4 Novelty Search -- 4.5 Niching -- 4.6 Summary -- 5 Constraints -- 5.1 Introduction -- 5.2 Constraints -- 5.3 Death Penalty -- 5.4 Penalty Functions -- 5.5 Repair -- 5.6 Decoders -- 5.7 Premature Stagnation -- 5.8 Summary -- 6 Multiple Objectives -- 6.1 Introduction -- 6.2 Multi-objective Optimization -- 6.3 Non-dominated Sorting -- 6.4 Crowding Distance -- 6.5 Rakes -- 6.6 Hypervolume Indicator -- 6.7 Summary -- Advanced Concepts -- 7 Theory -- 7.1 Introduction -- 7.2 Runtime Analysis -- 7.3 Markov Chains -- 7.4 Progress Rates -- 7.5 No Free Lunch -- 7.6 Schema Theorem -- 7.7 Building Block Hypothesis -- 7.8 Summary -- 8 Machine Learning -- 8.1 Introduction -- 8.2 Covariance Matrix Estimation -- 8.3 Fitness Surrogates -- 8.4 Constraint Surrogates -- 8.5 Dimensionality Reduction for Visualization -- 8.6 Summary -- 9 Applications -- 9.1 Introduction -- 9.2 Unsupervised Regression -- 9.3 Balancing Ensembles -- 9.4 Feature Tuning -- 9.5 Wind Turbine Placement -- 9.6 Virtual Power Plants -- 9.7 Summary -- Ending -- 10 Summary and Outlook -- 10.1 Summary -- 10.2 Outlook -- Appendix References -- Index.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.