ORPP logo
Image from Google Jackets

Defects and Impurities in Silicon Materials : An Introduction to Atomic-Level Silicon Engineering.

By: Contributor(s): Material type: TextTextSeries: Lecture Notes in Physics SeriesPublisher: Tokyo : Springer Japan, 2016Copyright date: ©2015Edition: 1st edDescription: 1 online resource (498 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9784431558002
Subject(s): Genre/Form: Additional physical formats: Print version:: Defects and Impurities in Silicon MaterialsDDC classification:
  • 546.683
LOC classification:
  • QC610.9-611.8
Online resources:
Contents:
Intro -- Preface -- Personal Reminiscences About George Rozgonyi -- Contents -- 1 Diffusion and Point Defects in Silicon Materials -- 1.1 Introduction -- 1.2 Defects in Semiconductors -- 1.3 Phenomenological Treatment of Diffusion -- 1.4 Atomistic Description of Diffusion -- 1.5 Diffusion Mechanisms -- 1.5.1 Direct Diffusion Mechanisms -- 1.5.2 Indirect Diffusion Mechanisms -- 1.5.2.1 Self-Diffusion -- 1.5.2.2 Foreign-Atom Diffusion -- 1.6 Mathematical Description of Diffusion -- 1.6.1 Diffusion of Hybrid Atoms -- 1.6.1.1 Reduced Differential Equation System -- 1.6.1.2 Dominance of the Dissociative Mechanism -- 1.6.1.3 Dominance of the Kick-Out Mechanism -- 1.6.1.4 Occurrence of Both Ai-As Exchange Mechanisms -- 1.6.1.5 Numerical Simulation of Foreign-Atom Diffusion via Interstitial-Substitutional Exchange -- 1.6.2 Diffusion of Dopant Atoms -- 1.6.2.1 Reaction Mechanisms with Charge States -- 1.6.2.2 Mathematical Formulation of Dopant Diffusion -- 1.6.2.3 Dopant Diffusion via the Dissociative Mechanism -- 1.7 Experimental Diffusion Profiles -- 1.7.1 Diffusion Profiles of Hybrid Atoms -- 1.7.2 Diffusion Profiles of Dopant Atoms -- 1.8 Concluding Remarks -- References -- 2 Density Functional Modeling of Defects and Impurities in Silicon Materials -- 2.1 Introduction -- 2.2 Theoretical Framework -- 2.2.1 The Many-Body Problem -- 2.2.2 Born-Oppenheimer Approximation -- 2.2.3 Hartree-Fock Method -- 2.2.4 Density-Functional Theory -- 2.2.4.1 Kohn-Sham Equations -- 2.2.4.2 The Exchange-Correlation Functional -- 2.2.5 Pseudopotentials -- 2.2.5.1 Basic Formulation -- 2.2.6 Boundary Conditions -- 2.2.6.1 The Supercell Method -- 2.2.7 Brillouin-Zone Sampling -- 2.2.8 Basis Functions -- 2.3 Calculation of Defect Observables -- 2.3.1 Structure of Solids and Defects -- 2.3.2 Electronic Structure of Defects -- 2.3.3 Adiabatic Mechanisms: Reactions, Migration, ….
2.3.4 Formation Energies and Electronic Levels -- 2.3.5 Local Vibrational Modes of Defects -- 2.3.6 Defect Response to Uniaxial Stress -- 2.4 Defects in Silicon Nanostructures -- 2.4.1 Freestanding and Particulate Nanostructures -- 2.4.2 Embedded Nanostructures -- 2.4.3 Doping of Si Nanostructures -- 2.5 Summary -- References -- 3 Electrical and Optical Defect Evaluation Techniques for Electronic and Solar Grade Silicon -- 3.1 Introduction -- 3.2 Recombination-Generation Processes in Silicon -- 3.2.1 Carrier Lifetime -- 3.2.2 Shockley-Read-Hall (SRH) Statistics -- 3.3 Quantifying the Properties of Defects -- 3.3.1 Measurement of the Concentrations of Shallow Donors and Acceptors -- 3.3.1.1 Resistivity Based Methods -- 3.3.1.2 Hall Effect Measurements -- 3.3.1.3 Capacitance-Voltage Techniques -- 3.3.2 Basic Principles of Measurements of Deep Level Defect Parameters -- 3.3.3 Thermal Emission of Carriers -- 3.3.4 Capture Cross Sections -- 3.3.5 Comparing Capacitance and Current Measurements -- 3.3.6 Transient Space Charge Methods … DLTS and Related Techniques -- 3.3.7 High Resolution Laplace DLTS -- 3.3.8 Minority Carrier Processes -- 3.3.9 DLTS Measurements of Iron in Silicon -- 3.4 Measurement of Carrier Lifetime -- 3.4.1 Generation Lifetime -- 3.4.2 Recombination Lifetime -- 3.4.3 Photoconductance Decay -- 3.4.4 Quasi-Steady State Photoconductance -- 3.4.5 Photoluminescence Based Techniques for Lifetime Measurement -- 3.4.6 Lifetime Techniques for the Assessment of Iron Contamination in p-type Silicon -- 3.5 Optical Methods for Defect Evaluation -- 3.5.1 Optical Absorption -- 3.5.1.1 Electronic Transition Related IR Absorption -- 3.5.1.2 Infrared Vibrational Spectroscopy -- 3.5.2 Photoluminescence -- 3.5.3 Raman Spectroscopy -- 3.6 Characterization of Defects in Electronic Grade Silicon -- 3.6.1 General Requirements in Relation to Device Requirements.
3.6.2 Contamination During Silicon Processing -- 3.6.3 Ion Implantation and Radiation Damage -- 3.7 Characterization of Defects in Solar Grade Silicon -- 3.7.1 Solar Grade Silicon and Its Defects -- 3.7.2 Defects in Single Crystal Silicon Material for Photovoltaic Applications -- 3.7.2.1 Metallic Impurities in Single Crystal Silicon for Photovoltaic Applications -- 3.7.2.2 Passivation of Defects with Hydrogen in Silicon Photovoltaics -- 3.7.2.3 Light-Induced Degradation of Si Solar Cells Doped with Boron and Oxygen -- 3.7.3 Defects in Multicrystalline Silicon -- References -- 4 Control of Intrinsic Point Defects in Single-Crystal Si and Ge Growth from a Melt -- 4.1 Introduction: A Very Brief History of Si and Ge Crystal Pulling -- 4.2 Grown-in Defects in Single-Crystal Silicon Grown from a Melt -- 4.2.1 State of the Art CZ and FZ Single-Crystal Pulling -- 4.2.2 Experimental Observations on Grown-in Defects -- 4.2.2.1 Detection and Characterization of Grown-in Defects -- 4.2.2.2 Vacancy Type Defects -- 4.2.2.3 Interstitial Type Defects -- 4.2.2.4 Transient Defect Phenomena -- 4.2.3 Simulation of Intrinsic Point Defect Cluster Formation During Crystal Pulling -- 4.2.4 The Voronkov Criterion for Defect-Free Crystal Growth -- 4.2.4.1 Intrinsic Point Defect Diffusion and Recombination -- 4.3 Impact of the Crystal-Melt Interface Shape on v/G -- 4.3.1 Change of the Critical v/G by the Interface Shape -- 4.3.2 Temperature Gradient Distribution Dependence on Interface Shape -- 4.3.3 Change of the Interface Shape by the Pulling Condition -- 4.4 Simulation of Intrinsic Point Defects During Crystal Growth -- 4.5 Optimum Condition for a Grown-in Defect Free Intrinsic Crystal -- 4.6 Impact of Stress on v/G -- 4.7 Impact of Doping: Dopant Induced Stress and Trapping -- 4.7.1 Reported Experimental Observations -- 4.7.1.1 Impact of Dopants.
4.7.2 Ab Initio Calculation of Dopant Impact on Uncharged Intrinsic Point Defects -- 4.7.2.1 Calculation Details -- 4.7.2.2 Intrinsic Point Defect Formation Energy -- 4.8 Open Questions: Impact of Fermi Level and Intrinsic Point Defect Formation Energy Near Crystal-Melt Interface -- 4.8.1 Impact of Fermi Level -- 4.8.2 Interstitial and Vacancy Formation Energy Near Crystal Surfaces -- 4.9 Conclusions and Further Work -- References -- 5 Numerical Analysis of Impurities and Dislocations During Silicon Crystal Growth for Solar Cells -- 5.1 Introduction -- 5.2 Simulation of Carbon and Oxygen Impurities -- 5.2.1 Mechanism of Carbon and Oxygen Incorporation -- 5.2.2 Numerical Modeling for Global Heat Transfer, Gas Flow and Impurity Transport -- 5.2.2.1 Numerical Modeling for Global Heat Transfer [24] -- 5.2.2.2 Numerical Modeling for Argon Gas Flow -- 5.2.2.3 Numerical Modeling for Impurity Transport -- 5.2.3 Distribution of Impurities -- 5.2.3.1 Distribution of SiO(g) in Gas and O(m) in Melt -- 5.2.3.2 Distributions of CO(g) in the Gas and C(m) in the Melt -- 5.2.3.3 Comparison with Experiments -- 5.2.4 Reduction of Carbon and Oxygen Impurities -- 5.2.5 Summary -- 5.3 Simulation of Dislocations -- 5.3.1 Mechanism of Dislocation Generation -- 5.3.2 Numerical Models for Dislocation Multiplication -- 5.3.3 Effect of Cooling Rate on the Generation of Dislocations -- 5.3.3.1 Furnace Structure and Cooling Settings -- 5.3.3.2 Distribution of Dislocations and Residual Stress in Different Cooling Rates -- 5.3.3.3 Activation of Slip Systems in Different Cooling Rates -- 5.3.4 Summary -- 5.4 Conclusions -- References -- 6 Oxygen Precipitation in Silicon -- 6.1 Introduction -- 6.2 Basic Features of Interstitial Oxygen in Silicon -- 6.3 Measurement of Interstitial Oxygen in Silicon -- 6.4 Oxygen Precipitation Described by Classical Nucleation Theory.
6.4.1 Volumetric Considerations -- 6.4.2 Homogeneous Nucleation of Spherical Precipitates -- 6.4.3 Homogeneous Nucleation of Plate-Like Precipitates -- 6.4.4 Heterogeneous Nucleation -- 6.4.5 Early Stages of Nucleation -- 6.4.6 Nucleation Curves -- 6.5 Rate Equation Modeling of Oxygen Precipitation -- 6.6 Methods for Characterization of Oxygen Precipitates -- 6.6.1 Transmission Electron Microscopy for Characterization of Oxygen Precipitate Morphology -- 6.6.2 Preferential Etching of Oxygen Precipitates -- 6.6.3 Infrared Laser Scattering Tomography -- 6.6.4 Infrared Absorption Spectra of Oxygen Precipitates -- 6.7 Characterization of Oxygen Precipitate Nuclei -- 6.8 Thermal Donors -- 6.9 Impact of Dopants and Impurities on Oxygen Precipitation -- 6.9.1 Boron -- 6.9.2 Hydrogen -- 6.9.3 Nitrogen -- 6.10 Oxygen Precipitation in Device Processing -- 6.10.1 Impact of Grown-In Oxygen Precipitate Nuclei on Defect Generation in Device Processing -- 6.10.2 Internal Gettering -- 6.10.3 Generation of Defect Denuded Zones -- 6.10.4 Getter Tests -- 6.10.5 Criteria for Efficient Gettering of Metal Impurities -- 6.11 Summary -- References -- 7 Defect Characterization in Silicon by Electron-Beam-Induced Current and Cathodoluminescence Techniques -- 7.1 Introduction -- 7.2 Principles -- 7.2.1 Electron Beam Excitation -- 7.2.2 EBIC -- 7.2.3 CL -- 7.3 Instrumentation -- 7.3.1 Electron Beam Source -- 7.3.2 Electric Circuit for EBIC -- 7.3.3 Light Detection Unit for CL -- 7.3.4 Low Temperature System -- 7.4 Defects in Si -- 7.4.1 Dislocations in Single Crystalline Si -- 7.4.1.1 Electrical Activity -- 7.4.1.2 Optical Activity -- 7.4.2 Misfit Dislocations in SiGe/Si Heterostructure -- 7.4.3 Oxidation-Induced Stacking Faults in CZ Si -- 7.4.4 Grain Boundaries in Multicrystalline Si -- 7.4.4.1 Large Angle Grain Boundaries (LA-GBs).
7.4.4.2 Small Angle Grain Boundaries (SA-GBs).
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Preface -- Personal Reminiscences About George Rozgonyi -- Contents -- 1 Diffusion and Point Defects in Silicon Materials -- 1.1 Introduction -- 1.2 Defects in Semiconductors -- 1.3 Phenomenological Treatment of Diffusion -- 1.4 Atomistic Description of Diffusion -- 1.5 Diffusion Mechanisms -- 1.5.1 Direct Diffusion Mechanisms -- 1.5.2 Indirect Diffusion Mechanisms -- 1.5.2.1 Self-Diffusion -- 1.5.2.2 Foreign-Atom Diffusion -- 1.6 Mathematical Description of Diffusion -- 1.6.1 Diffusion of Hybrid Atoms -- 1.6.1.1 Reduced Differential Equation System -- 1.6.1.2 Dominance of the Dissociative Mechanism -- 1.6.1.3 Dominance of the Kick-Out Mechanism -- 1.6.1.4 Occurrence of Both Ai-As Exchange Mechanisms -- 1.6.1.5 Numerical Simulation of Foreign-Atom Diffusion via Interstitial-Substitutional Exchange -- 1.6.2 Diffusion of Dopant Atoms -- 1.6.2.1 Reaction Mechanisms with Charge States -- 1.6.2.2 Mathematical Formulation of Dopant Diffusion -- 1.6.2.3 Dopant Diffusion via the Dissociative Mechanism -- 1.7 Experimental Diffusion Profiles -- 1.7.1 Diffusion Profiles of Hybrid Atoms -- 1.7.2 Diffusion Profiles of Dopant Atoms -- 1.8 Concluding Remarks -- References -- 2 Density Functional Modeling of Defects and Impurities in Silicon Materials -- 2.1 Introduction -- 2.2 Theoretical Framework -- 2.2.1 The Many-Body Problem -- 2.2.2 Born-Oppenheimer Approximation -- 2.2.3 Hartree-Fock Method -- 2.2.4 Density-Functional Theory -- 2.2.4.1 Kohn-Sham Equations -- 2.2.4.2 The Exchange-Correlation Functional -- 2.2.5 Pseudopotentials -- 2.2.5.1 Basic Formulation -- 2.2.6 Boundary Conditions -- 2.2.6.1 The Supercell Method -- 2.2.7 Brillouin-Zone Sampling -- 2.2.8 Basis Functions -- 2.3 Calculation of Defect Observables -- 2.3.1 Structure of Solids and Defects -- 2.3.2 Electronic Structure of Defects -- 2.3.3 Adiabatic Mechanisms: Reactions, Migration, ….

2.3.4 Formation Energies and Electronic Levels -- 2.3.5 Local Vibrational Modes of Defects -- 2.3.6 Defect Response to Uniaxial Stress -- 2.4 Defects in Silicon Nanostructures -- 2.4.1 Freestanding and Particulate Nanostructures -- 2.4.2 Embedded Nanostructures -- 2.4.3 Doping of Si Nanostructures -- 2.5 Summary -- References -- 3 Electrical and Optical Defect Evaluation Techniques for Electronic and Solar Grade Silicon -- 3.1 Introduction -- 3.2 Recombination-Generation Processes in Silicon -- 3.2.1 Carrier Lifetime -- 3.2.2 Shockley-Read-Hall (SRH) Statistics -- 3.3 Quantifying the Properties of Defects -- 3.3.1 Measurement of the Concentrations of Shallow Donors and Acceptors -- 3.3.1.1 Resistivity Based Methods -- 3.3.1.2 Hall Effect Measurements -- 3.3.1.3 Capacitance-Voltage Techniques -- 3.3.2 Basic Principles of Measurements of Deep Level Defect Parameters -- 3.3.3 Thermal Emission of Carriers -- 3.3.4 Capture Cross Sections -- 3.3.5 Comparing Capacitance and Current Measurements -- 3.3.6 Transient Space Charge Methods … DLTS and Related Techniques -- 3.3.7 High Resolution Laplace DLTS -- 3.3.8 Minority Carrier Processes -- 3.3.9 DLTS Measurements of Iron in Silicon -- 3.4 Measurement of Carrier Lifetime -- 3.4.1 Generation Lifetime -- 3.4.2 Recombination Lifetime -- 3.4.3 Photoconductance Decay -- 3.4.4 Quasi-Steady State Photoconductance -- 3.4.5 Photoluminescence Based Techniques for Lifetime Measurement -- 3.4.6 Lifetime Techniques for the Assessment of Iron Contamination in p-type Silicon -- 3.5 Optical Methods for Defect Evaluation -- 3.5.1 Optical Absorption -- 3.5.1.1 Electronic Transition Related IR Absorption -- 3.5.1.2 Infrared Vibrational Spectroscopy -- 3.5.2 Photoluminescence -- 3.5.3 Raman Spectroscopy -- 3.6 Characterization of Defects in Electronic Grade Silicon -- 3.6.1 General Requirements in Relation to Device Requirements.

3.6.2 Contamination During Silicon Processing -- 3.6.3 Ion Implantation and Radiation Damage -- 3.7 Characterization of Defects in Solar Grade Silicon -- 3.7.1 Solar Grade Silicon and Its Defects -- 3.7.2 Defects in Single Crystal Silicon Material for Photovoltaic Applications -- 3.7.2.1 Metallic Impurities in Single Crystal Silicon for Photovoltaic Applications -- 3.7.2.2 Passivation of Defects with Hydrogen in Silicon Photovoltaics -- 3.7.2.3 Light-Induced Degradation of Si Solar Cells Doped with Boron and Oxygen -- 3.7.3 Defects in Multicrystalline Silicon -- References -- 4 Control of Intrinsic Point Defects in Single-Crystal Si and Ge Growth from a Melt -- 4.1 Introduction: A Very Brief History of Si and Ge Crystal Pulling -- 4.2 Grown-in Defects in Single-Crystal Silicon Grown from a Melt -- 4.2.1 State of the Art CZ and FZ Single-Crystal Pulling -- 4.2.2 Experimental Observations on Grown-in Defects -- 4.2.2.1 Detection and Characterization of Grown-in Defects -- 4.2.2.2 Vacancy Type Defects -- 4.2.2.3 Interstitial Type Defects -- 4.2.2.4 Transient Defect Phenomena -- 4.2.3 Simulation of Intrinsic Point Defect Cluster Formation During Crystal Pulling -- 4.2.4 The Voronkov Criterion for Defect-Free Crystal Growth -- 4.2.4.1 Intrinsic Point Defect Diffusion and Recombination -- 4.3 Impact of the Crystal-Melt Interface Shape on v/G -- 4.3.1 Change of the Critical v/G by the Interface Shape -- 4.3.2 Temperature Gradient Distribution Dependence on Interface Shape -- 4.3.3 Change of the Interface Shape by the Pulling Condition -- 4.4 Simulation of Intrinsic Point Defects During Crystal Growth -- 4.5 Optimum Condition for a Grown-in Defect Free Intrinsic Crystal -- 4.6 Impact of Stress on v/G -- 4.7 Impact of Doping: Dopant Induced Stress and Trapping -- 4.7.1 Reported Experimental Observations -- 4.7.1.1 Impact of Dopants.

4.7.2 Ab Initio Calculation of Dopant Impact on Uncharged Intrinsic Point Defects -- 4.7.2.1 Calculation Details -- 4.7.2.2 Intrinsic Point Defect Formation Energy -- 4.8 Open Questions: Impact of Fermi Level and Intrinsic Point Defect Formation Energy Near Crystal-Melt Interface -- 4.8.1 Impact of Fermi Level -- 4.8.2 Interstitial and Vacancy Formation Energy Near Crystal Surfaces -- 4.9 Conclusions and Further Work -- References -- 5 Numerical Analysis of Impurities and Dislocations During Silicon Crystal Growth for Solar Cells -- 5.1 Introduction -- 5.2 Simulation of Carbon and Oxygen Impurities -- 5.2.1 Mechanism of Carbon and Oxygen Incorporation -- 5.2.2 Numerical Modeling for Global Heat Transfer, Gas Flow and Impurity Transport -- 5.2.2.1 Numerical Modeling for Global Heat Transfer [24] -- 5.2.2.2 Numerical Modeling for Argon Gas Flow -- 5.2.2.3 Numerical Modeling for Impurity Transport -- 5.2.3 Distribution of Impurities -- 5.2.3.1 Distribution of SiO(g) in Gas and O(m) in Melt -- 5.2.3.2 Distributions of CO(g) in the Gas and C(m) in the Melt -- 5.2.3.3 Comparison with Experiments -- 5.2.4 Reduction of Carbon and Oxygen Impurities -- 5.2.5 Summary -- 5.3 Simulation of Dislocations -- 5.3.1 Mechanism of Dislocation Generation -- 5.3.2 Numerical Models for Dislocation Multiplication -- 5.3.3 Effect of Cooling Rate on the Generation of Dislocations -- 5.3.3.1 Furnace Structure and Cooling Settings -- 5.3.3.2 Distribution of Dislocations and Residual Stress in Different Cooling Rates -- 5.3.3.3 Activation of Slip Systems in Different Cooling Rates -- 5.3.4 Summary -- 5.4 Conclusions -- References -- 6 Oxygen Precipitation in Silicon -- 6.1 Introduction -- 6.2 Basic Features of Interstitial Oxygen in Silicon -- 6.3 Measurement of Interstitial Oxygen in Silicon -- 6.4 Oxygen Precipitation Described by Classical Nucleation Theory.

6.4.1 Volumetric Considerations -- 6.4.2 Homogeneous Nucleation of Spherical Precipitates -- 6.4.3 Homogeneous Nucleation of Plate-Like Precipitates -- 6.4.4 Heterogeneous Nucleation -- 6.4.5 Early Stages of Nucleation -- 6.4.6 Nucleation Curves -- 6.5 Rate Equation Modeling of Oxygen Precipitation -- 6.6 Methods for Characterization of Oxygen Precipitates -- 6.6.1 Transmission Electron Microscopy for Characterization of Oxygen Precipitate Morphology -- 6.6.2 Preferential Etching of Oxygen Precipitates -- 6.6.3 Infrared Laser Scattering Tomography -- 6.6.4 Infrared Absorption Spectra of Oxygen Precipitates -- 6.7 Characterization of Oxygen Precipitate Nuclei -- 6.8 Thermal Donors -- 6.9 Impact of Dopants and Impurities on Oxygen Precipitation -- 6.9.1 Boron -- 6.9.2 Hydrogen -- 6.9.3 Nitrogen -- 6.10 Oxygen Precipitation in Device Processing -- 6.10.1 Impact of Grown-In Oxygen Precipitate Nuclei on Defect Generation in Device Processing -- 6.10.2 Internal Gettering -- 6.10.3 Generation of Defect Denuded Zones -- 6.10.4 Getter Tests -- 6.10.5 Criteria for Efficient Gettering of Metal Impurities -- 6.11 Summary -- References -- 7 Defect Characterization in Silicon by Electron-Beam-Induced Current and Cathodoluminescence Techniques -- 7.1 Introduction -- 7.2 Principles -- 7.2.1 Electron Beam Excitation -- 7.2.2 EBIC -- 7.2.3 CL -- 7.3 Instrumentation -- 7.3.1 Electron Beam Source -- 7.3.2 Electric Circuit for EBIC -- 7.3.3 Light Detection Unit for CL -- 7.3.4 Low Temperature System -- 7.4 Defects in Si -- 7.4.1 Dislocations in Single Crystalline Si -- 7.4.1.1 Electrical Activity -- 7.4.1.2 Optical Activity -- 7.4.2 Misfit Dislocations in SiGe/Si Heterostructure -- 7.4.3 Oxidation-Induced Stacking Faults in CZ Si -- 7.4.4 Grain Boundaries in Multicrystalline Si -- 7.4.4.1 Large Angle Grain Boundaries (LA-GBs).

7.4.4.2 Small Angle Grain Boundaries (SA-GBs).

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.