ORPP logo
Image from Google Jackets

Laser-Based Mid-infrared Sources and Applications.

By: Material type: TextTextSeries: A Wiley-Science Wise Co-PublicationPublisher: Newark : John Wiley & Sons, Incorporated, 2020Copyright date: ©2020Edition: 1st edDescription: 1 online resource (311 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119011972
Subject(s): Genre/Form: Additional physical formats: Print version:: Laser-Based Mid-infrared Sources and ApplicationsDDC classification:
  • 621.366
LOC classification:
  • TA1675 .V636 2020
Online resources:
Contents:
Cover -- Title Page -- Copyright Page -- Table of Contents -- About the Author -- Preface -- Chapter 1 Mid-IR Spectral Range -- 1.1 Definition of the Mid-IR -- 1.2 The World's Second Laser -- 1.3 Internal Vibrations of Molecules -- References -- Chapter 2 Solid-state Crystalline Mid-IR Lasers -- 2.1 Rare-Earth-based Tm3+, Ho3+, and Er3+ Lasers -- 2.1.1 Tm3+ Lasers -- 2.1.2 Ho3+ Lasers -- 2.1.3 Er3+ Lasers -- 2.2 Transition Metal Cr2+ and Fe2+ Lasers -- 2.2.1 Spectroscopic Properties of Cr2+ and Fe2+ -- 2.2.2 Lasers Based on Chalcogenide Crystals Doped with Cr2+ -- 2.2.2.1 Broadly Tunable Cr2+ Lasers -- 2.2.2.2 High-power Continuous-wave Cr2+ Lasers -- 2.2.2.3 High-power Cr2+ CW Laser Systems Operating at 2.94 μm -- 2.2.2.4 Gain-switched High-power Cr2+ Lasers -- 2.2.2.5 Microchip Cr2+ Lasers -- 2.2.2.6 Waveguide and Thin-disk Cr:ZnSe Lasers -- 2.2.2.7 Mode-locked Cr:ZnS/Cr:ZnSe Lasers -- 2.2.3 Lasers Based on Chalcogenide Crystals Doped with Fe2+ -- 2.2.3.1 Free-running Pulsed Fe:ZnSe/ZnS Lasers -- 2.2.3.2 Gain-switched Regime of Fe2+ Lasers at Room Temperature -- 2.2.3.3 Continuous-wave Fe2+ Lasers -- 2.2.3.4 Tunable Fe2+ Lasers at Room Temperature -- 2.2.3.5 Ultrafast Amplifier in the 3.8-4.8 μm Range -- 2.3 Summary -- References -- Chapter 3 Fiber Mid-IR Lasers -- 3.1 Introduction -- 3.2 Continuous-wave Mid-IR Fiber Lasers -- 3.2.1 Tm-based Fiber Lasers -- 3.2.2 Ho-based Fiber Lasers -- 3.2.3 Er-based Fiber Lasers -- 3.2.4 Dy-based Fiber Lasers -- 3.2.5 Raman Fiber Lasers -- 3.3 Q-switched Mid-IR Fiber Lasers -- 3.4 Mode-locked Mid-IR Fiber Lasers -- 3.5 Summary -- References -- Chapter 4 Semiconductor Lasers -- 4.1 Heterojunction Mid-IR Lasers -- 4.1.1 GaSb-based Diode Lasers -- 4.1.2 Distributed Feedback GASb-based Lasers -- 4.2 Quantum Cascade Lasers -- 4.2.1 High Power and High Efficiency QCLs.
4.2.2 Single-mode Distributed Feedback (DFB) QCLs -- 4.2.3 Broadly Tunable QCLs with an External Cavity -- 4.2.4 Short-wavelength (&lt -- 4 m) QCLs -- 4.2.5 QCLs at Long (16-21 m) Wavelengths -- 4.3 Interband Cascade Lasers -- 4.4 Optically Pumped Semiconductor Disk Lasers (OPSDLs) -- 4.4.1 (AlGaIn)(AsSb)-based OPSDL at 2.3 m -- 4.4.2 PbS-based OPSDL at  = 2.6-3 m -- 4.4.3 PbSe-based OPSDL at  = 4.2-4.8 m -- 4.4.4 PbTe-based OPSDL at  = 4.7-5.6 m -- 4.5 Summary -- References -- Chapter 5 Mid-IR by Nonlinear Optical Frequency Conversion -- 5.1 Two Approaches to Frequency Downconversion Using Second-order Nonlinearity -- 5.1.1 Difference Frequency Generation -- 5.1.2 Optical Parametric Oscillators (OPOs) -- 5.1.3 Brief Review of (2) Nonlinear Crystals for Mid-IR -- 5.1.3.1 Periodically Poled Oxides -- 5.1.3.2 Birefringent Crystals -- 5.1.3.3 Emerging QPM Nonlinear Optical Materials -- 5.2 Continuous-wave (CW) Regime -- 5.2.1 DFG of CW Radiation -- 5.2.2 CW OPOs -- 5.3 Pulsed Regime -- 5.3.1 Pulsed DFG -- 5.3.2 Pulsed OPOs -- 5.3.2.1 Broadly Tunable Pulsed OPOs -- 5.3.2.2 Narrow-linewidth Pulsed OPOs -- 5.3.2.3 High Average Power OPOs -- 5.3.2.4 High Pulse Energy OPOs -- 5.3.2.5 Waveguide OPOs -- 5.4 Regime of Ultrashort (ps and fs) Pulses -- 5.4.1 Ultrafast DFG -- 5.4.2 Intra-pulse DFG (Optical Rectification) -- 5.4.3 Ultrafast OPOs -- 5.4.3.1 Picosecond Mode -- 5.4.3.2 Femtosecond Mode -- 5.4.4 Ultrafast OPGs -- 5.4.5 Ultrafast OPAs -- 5.5 Raman Frequency Converters -- 5.5.1 Crystalline Raman Converters -- 5.5.2 Fiber Raman Converters -- 5.5.3 Silicon Raman Converters -- 5.5.4 Diamond Raman Converters -- 5.5.5 Other Raman Converters -- 5.6 Summary -- References -- Chapter 6 Supercontinuum and Frequency Comb Sources -- 6.1 Supercontinuum Sources -- 6.1.1 SC from Lead-silicate Glass Fibers -- 6.1.2 SC from Tellurite Glass Fibers.
6.1.3 SC from ZBLAN Fibers -- 6.1.4 SC from Chalcogenide Glass Fibers -- 6.1.5 SC from Waveguides -- 6.1.6 SC from Bulk Crystals -- 6.1.7 Other SC Sources -- 6.2 Frequency Comb Sources -- 6.2.1 Direct Comb Sources from Mode-locked Lasers -- 6.2.2 Combs Produced by Spectral Broadening in NL Fibers and Waveguides -- 6.2.3 Combs Produced by Difference Frequency Generation -- 6.2.4 OPO-based Combs -- 6.2.5 Combs Based on Optical Subharmonic Generation -- 6.2.6 Microresonator-based Kerr Combs -- 6.2.7 Combs from Quantum Cascade Lasers -- 6.2.8 Combs from Interband Cascade Lasers -- 6.3 Summary -- References -- Chapter 7 Mid-IR Applications -- 7.1 Spectroscopic Sensing and Imaging -- 7.1.1 QCLs for Spectroscopy and Trace-gas Analysis -- 7.1.2 Spectroscopy with ICLs -- 7.1.3 Spectroscopy with DFG and OPO Sources -- 7.1.4 Broadband Spectroscopy with Frequency Combs -- 7.1.5 Hyperspectral Imaging -- 7.2 Medical Applications -- 7.2.1 Laser Tissue Interactions -- 7.2.1.1 Holmium and Thulium Surgical Lasers -- 7.2.1.2 Er:YAG Lasers (λ = 2.9 μm) -- 7.2.1.3 Importance of the Spectral Band of 6-7 μm -- 7.2.2 Medical Breath Analysis -- 7.2.2.1 Ethane (C2H6) -- 7.2.2.2 NO -- 7.2.2.3 NH3 -- 7.2.2.4 CO -- 7.2.2.5 OCS -- 7.2.2.6 Optical Frequency Comb Spectroscopy for Breath Analysis -- 7.3 Nano-IR Imaging and Chemical Mapping -- 7.4 Plasmonics in the Mid-IR -- 7.5 Infrared Countermeasures -- 7.6 Extreme Nonlinear Optics and Attosecond Science -- 7.7 Other Applications -- 7.7.1 Laser Wake-field Accelerators -- 7.7.2 Laser Acceleration in Dielectric Structures -- 7.7.3 Free-space Communications -- 7.7.4 Organic Material Processing -- References -- Index -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright Page -- Table of Contents -- About the Author -- Preface -- Chapter 1 Mid-IR Spectral Range -- 1.1 Definition of the Mid-IR -- 1.2 The World's Second Laser -- 1.3 Internal Vibrations of Molecules -- References -- Chapter 2 Solid-state Crystalline Mid-IR Lasers -- 2.1 Rare-Earth-based Tm3+, Ho3+, and Er3+ Lasers -- 2.1.1 Tm3+ Lasers -- 2.1.2 Ho3+ Lasers -- 2.1.3 Er3+ Lasers -- 2.2 Transition Metal Cr2+ and Fe2+ Lasers -- 2.2.1 Spectroscopic Properties of Cr2+ and Fe2+ -- 2.2.2 Lasers Based on Chalcogenide Crystals Doped with Cr2+ -- 2.2.2.1 Broadly Tunable Cr2+ Lasers -- 2.2.2.2 High-power Continuous-wave Cr2+ Lasers -- 2.2.2.3 High-power Cr2+ CW Laser Systems Operating at 2.94 μm -- 2.2.2.4 Gain-switched High-power Cr2+ Lasers -- 2.2.2.5 Microchip Cr2+ Lasers -- 2.2.2.6 Waveguide and Thin-disk Cr:ZnSe Lasers -- 2.2.2.7 Mode-locked Cr:ZnS/Cr:ZnSe Lasers -- 2.2.3 Lasers Based on Chalcogenide Crystals Doped with Fe2+ -- 2.2.3.1 Free-running Pulsed Fe:ZnSe/ZnS Lasers -- 2.2.3.2 Gain-switched Regime of Fe2+ Lasers at Room Temperature -- 2.2.3.3 Continuous-wave Fe2+ Lasers -- 2.2.3.4 Tunable Fe2+ Lasers at Room Temperature -- 2.2.3.5 Ultrafast Amplifier in the 3.8-4.8 μm Range -- 2.3 Summary -- References -- Chapter 3 Fiber Mid-IR Lasers -- 3.1 Introduction -- 3.2 Continuous-wave Mid-IR Fiber Lasers -- 3.2.1 Tm-based Fiber Lasers -- 3.2.2 Ho-based Fiber Lasers -- 3.2.3 Er-based Fiber Lasers -- 3.2.4 Dy-based Fiber Lasers -- 3.2.5 Raman Fiber Lasers -- 3.3 Q-switched Mid-IR Fiber Lasers -- 3.4 Mode-locked Mid-IR Fiber Lasers -- 3.5 Summary -- References -- Chapter 4 Semiconductor Lasers -- 4.1 Heterojunction Mid-IR Lasers -- 4.1.1 GaSb-based Diode Lasers -- 4.1.2 Distributed Feedback GASb-based Lasers -- 4.2 Quantum Cascade Lasers -- 4.2.1 High Power and High Efficiency QCLs.

4.2.2 Single-mode Distributed Feedback (DFB) QCLs -- 4.2.3 Broadly Tunable QCLs with an External Cavity -- 4.2.4 Short-wavelength (&lt -- 4 m) QCLs -- 4.2.5 QCLs at Long (16-21 m) Wavelengths -- 4.3 Interband Cascade Lasers -- 4.4 Optically Pumped Semiconductor Disk Lasers (OPSDLs) -- 4.4.1 (AlGaIn)(AsSb)-based OPSDL at 2.3 m -- 4.4.2 PbS-based OPSDL at  = 2.6-3 m -- 4.4.3 PbSe-based OPSDL at  = 4.2-4.8 m -- 4.4.4 PbTe-based OPSDL at  = 4.7-5.6 m -- 4.5 Summary -- References -- Chapter 5 Mid-IR by Nonlinear Optical Frequency Conversion -- 5.1 Two Approaches to Frequency Downconversion Using Second-order Nonlinearity -- 5.1.1 Difference Frequency Generation -- 5.1.2 Optical Parametric Oscillators (OPOs) -- 5.1.3 Brief Review of (2) Nonlinear Crystals for Mid-IR -- 5.1.3.1 Periodically Poled Oxides -- 5.1.3.2 Birefringent Crystals -- 5.1.3.3 Emerging QPM Nonlinear Optical Materials -- 5.2 Continuous-wave (CW) Regime -- 5.2.1 DFG of CW Radiation -- 5.2.2 CW OPOs -- 5.3 Pulsed Regime -- 5.3.1 Pulsed DFG -- 5.3.2 Pulsed OPOs -- 5.3.2.1 Broadly Tunable Pulsed OPOs -- 5.3.2.2 Narrow-linewidth Pulsed OPOs -- 5.3.2.3 High Average Power OPOs -- 5.3.2.4 High Pulse Energy OPOs -- 5.3.2.5 Waveguide OPOs -- 5.4 Regime of Ultrashort (ps and fs) Pulses -- 5.4.1 Ultrafast DFG -- 5.4.2 Intra-pulse DFG (Optical Rectification) -- 5.4.3 Ultrafast OPOs -- 5.4.3.1 Picosecond Mode -- 5.4.3.2 Femtosecond Mode -- 5.4.4 Ultrafast OPGs -- 5.4.5 Ultrafast OPAs -- 5.5 Raman Frequency Converters -- 5.5.1 Crystalline Raman Converters -- 5.5.2 Fiber Raman Converters -- 5.5.3 Silicon Raman Converters -- 5.5.4 Diamond Raman Converters -- 5.5.5 Other Raman Converters -- 5.6 Summary -- References -- Chapter 6 Supercontinuum and Frequency Comb Sources -- 6.1 Supercontinuum Sources -- 6.1.1 SC from Lead-silicate Glass Fibers -- 6.1.2 SC from Tellurite Glass Fibers.

6.1.3 SC from ZBLAN Fibers -- 6.1.4 SC from Chalcogenide Glass Fibers -- 6.1.5 SC from Waveguides -- 6.1.6 SC from Bulk Crystals -- 6.1.7 Other SC Sources -- 6.2 Frequency Comb Sources -- 6.2.1 Direct Comb Sources from Mode-locked Lasers -- 6.2.2 Combs Produced by Spectral Broadening in NL Fibers and Waveguides -- 6.2.3 Combs Produced by Difference Frequency Generation -- 6.2.4 OPO-based Combs -- 6.2.5 Combs Based on Optical Subharmonic Generation -- 6.2.6 Microresonator-based Kerr Combs -- 6.2.7 Combs from Quantum Cascade Lasers -- 6.2.8 Combs from Interband Cascade Lasers -- 6.3 Summary -- References -- Chapter 7 Mid-IR Applications -- 7.1 Spectroscopic Sensing and Imaging -- 7.1.1 QCLs for Spectroscopy and Trace-gas Analysis -- 7.1.2 Spectroscopy with ICLs -- 7.1.3 Spectroscopy with DFG and OPO Sources -- 7.1.4 Broadband Spectroscopy with Frequency Combs -- 7.1.5 Hyperspectral Imaging -- 7.2 Medical Applications -- 7.2.1 Laser Tissue Interactions -- 7.2.1.1 Holmium and Thulium Surgical Lasers -- 7.2.1.2 Er:YAG Lasers (λ = 2.9 μm) -- 7.2.1.3 Importance of the Spectral Band of 6-7 μm -- 7.2.2 Medical Breath Analysis -- 7.2.2.1 Ethane (C2H6) -- 7.2.2.2 NO -- 7.2.2.3 NH3 -- 7.2.2.4 CO -- 7.2.2.5 OCS -- 7.2.2.6 Optical Frequency Comb Spectroscopy for Breath Analysis -- 7.3 Nano-IR Imaging and Chemical Mapping -- 7.4 Plasmonics in the Mid-IR -- 7.5 Infrared Countermeasures -- 7.6 Extreme Nonlinear Optics and Attosecond Science -- 7.7 Other Applications -- 7.7.1 Laser Wake-field Accelerators -- 7.7.2 Laser Acceleration in Dielectric Structures -- 7.7.3 Free-space Communications -- 7.7.4 Organic Material Processing -- References -- Index -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.