ORPP logo
Image from Google Jackets

Essentials of Supersonic Commercial Aircraft Conceptual Design.

By: Contributor(s): Material type: TextTextSeries: Aerospace SeriesPublisher: Newark : John Wiley & Sons, Incorporated, 2020Copyright date: ©2020Edition: 1st edDescription: 1 online resource (181 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119667049
Subject(s): Genre/Form: Additional physical formats: Print version:: Essentials of Supersonic Commercial Aircraft Conceptual DesignLOC classification:
  • TL685.7 .T674 2020
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- Foreword -- Series Preface -- Preface -- Acknowledgements -- Chapter 1 History of Supersonic Transport Aircraft Development -- 1.1 Concorde's Development and Service -- 1.2 SST Development Program -- 1.3 Transonic Transport Configuration Studies -- 1.4 US High Speed Research and Development Programs -- 1.5 European Supersonic Research Program -- 1.6 A Market for a Supersonic Commercial Aircraft? -- 1.6.1 Why Fly Supersonically? -- 1.6.2 Requirements and Operations -- 1.6.3 Block Speed, Productivity, and Complexity -- Bibliography -- Chapter 2 The Challenges of High‐speed Flight -- 2.1 Top Level Requirements (TLR) -- 2.2 The Need for Speed -- 2.3 Cruise Speed Selection -- 2.4 Aerodynamic Design Considerations -- 2.4.1 Fuel and Flight Efficiency -- 2.4.2 Aerodynamic Efficiency -- 2.4.3 Power Plant Efficiency -- 2.4.4 Flight Efficiency -- 2.4.5 Cruise Altitude -- Bibliography -- Chapter 3 Weight Prediction, Optimization, and Energy Efficiency -- 3.1 The Unity Equation -- 3.2 Early Weight Prediction -- 3.2.1 Empty Weight -- 3.3 Fuel Weight -- 3.3.1 Mission Fuel -- 3.3.2 Reserve Fuel -- 3.4 Take‐off Weight and the Weight Growth Factor -- 3.5 Example of an Early Weight Prediction -- 3.5.1 MTOW Sensitivity -- 3.6 Productivity and Energy Efficiency -- 3.6.1 Range for Maximum Productivity -- 3.6.2 Energy Efficiency -- 3.6.3 Conclusion -- Bibliography -- Chapter 4 Aerodynamic Phenomena in Supersonic Flow -- 4.1 Compressibility of Atmospheric Air -- 4.1.1 Speed of Sound and Mach Number -- 4.1.2 Compressible and Incompressible Flows -- 4.2 Streamlines and Mach Waves -- 4.2.1 Sound Waves -- 4.3 Shock Waves -- 4.4 Normal Shock Waves -- 4.4.1 Effects of Normal Shock Waves -- 4.5 Planar Oblique Shock Waves -- 4.6 Curved and Detached Shock waves -- 4.7 Expansion Flows -- 4.8 Shock‐expansion Technique.
4.9 Leading‐edge Delta Vortices -- 4.10 Sonic Boom -- Bibliography -- Chapter 5 Thin Wings in Two‐dimensional Flow -- 5.1 Small Perturbation Flow -- 5.1.1 Linearized Velocity Potential Equation -- 5.1.2 Pressure Coefficient -- 5.1.3 Lift Gradient -- 5.1.4 Pressure Drag -- 5.1.5 Symmetric Airfoils with Minimum Pressure Drag -- 5.1.6 Total Drag -- 5.1.7 Center of Pressure -- 5.1.8 Concluding Remarks -- Bibliography -- Chapter 6 Flat Wings in Inviscid Supersonic Flow -- 6.1 Classification of Edge Flows -- 6.2 Linear Theory for Three‐dimensional Inviscid Flow -- 6.2.1 Flow Reversal Theorems -- 6.2.2 Constant‐chord Straight Wings -- 6.2.3 Constant‐chord Swept Wings -- 6.3 Slender Wings -- 6.4 Delta Wing -- 6.4.1 Supersonic Leading Edge -- 6.4.2 Subsonic Leading Edge -- 6.5 Arrow Wings -- 6.6 Slender Delta and Arrow Wing Varieties -- Bibliography -- Chapter 7 Aerodynamic Drag in Cruising Flight -- 7.1 Categories of Drag Contributions -- 7.1.1 Miscellaneous Drag Terms and the Concept Drag Area -- 7.1.2 Analysis Methods -- 7.2 Skin Friction Drag -- 7.2.1 Friction Coefficient -- 7.2.2 Flat‐plate Analogy -- 7.2.3 Form Drag -- 7.3 Slender Body Wave Drag -- 7.3.1 Conical Forebody Pressure Drag -- 7.3.2 Von Kármán's Ogive -- 7.3.3 Sear-Haack Body -- 7.4 Zero‐lift Drag of Flat Delta Wings -- 7.4.1 Drag due to Lift -- 7.4.2 Vortex‐induced Drag -- 7.4.3 Wave Drag Due to Lift -- 7.5 Wing‐alone Glide Ratio -- 7.5.1 Notched Trailing Edges -- 7.5.2 Zero‐lift Drag -- 7.5.3 Induced Drag -- 7.5.4 Minimum Glide Ratio -- 7.6 Fuselage‐alone Drag -- 7.6.1 Pressure Drag -- 7.6.2 Skin Friction Drag -- 7.6.3 Fuselage Slenderness Ratio -- Bibliography -- Chapter 8 Aerodynamic Efficiency of SCV Configurations -- 8.1 Interaction Between Configuration Shape and Drag -- 8.2 Configuration (A) -- 8.2.1 Slenderness ratio and lift coefficient for minimum drag.
8.2.2 Cruise Altitude for Minimum Drag -- 8.3 Configuration B -- 8.3.1 Glide Ratio -- 8.3.2 Cruise Altitude and Wing Loading -- 8.4 Full‐configuration Drag -- 8.4.1 Configuration Glide Ratio -- 8.4.2 Notch Ratio Selection -- 8.5 Selection of the General Arrangement -- 8.5.1 Fore‐plane Versus After‐tail -- 8.5.2 Application of the Area Rule -- Bibliography -- Chapter 9 Aerodynamics of Cambered Wings -- 9.1 Flat Delta Wing Lift Gradient and Induced Drag -- 9.1.1 Achievable Leading‐edge Thrust -- 9.2 Warped Wings -- Bibliography -- Chapter 10 Oblique Wing Aircraft -- 10.1 Advantages of the Oblique Wing -- 10.2 Practical Advantages of the Oblique Wing -- 10.3 Oblique Wing Transport Aircraft -- 10.4 Oblique Flying Wing (OFW) -- 10.4.1 OFW Flying Qualities and Disadvantages -- 10.5 Conventional and OWB Configurations Compared -- 10.5.1 Practical Side‐effects -- 10.6 Conclusion -- Bibliography -- Index -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- Foreword -- Series Preface -- Preface -- Acknowledgements -- Chapter 1 History of Supersonic Transport Aircraft Development -- 1.1 Concorde's Development and Service -- 1.2 SST Development Program -- 1.3 Transonic Transport Configuration Studies -- 1.4 US High Speed Research and Development Programs -- 1.5 European Supersonic Research Program -- 1.6 A Market for a Supersonic Commercial Aircraft? -- 1.6.1 Why Fly Supersonically? -- 1.6.2 Requirements and Operations -- 1.6.3 Block Speed, Productivity, and Complexity -- Bibliography -- Chapter 2 The Challenges of High‐speed Flight -- 2.1 Top Level Requirements (TLR) -- 2.2 The Need for Speed -- 2.3 Cruise Speed Selection -- 2.4 Aerodynamic Design Considerations -- 2.4.1 Fuel and Flight Efficiency -- 2.4.2 Aerodynamic Efficiency -- 2.4.3 Power Plant Efficiency -- 2.4.4 Flight Efficiency -- 2.4.5 Cruise Altitude -- Bibliography -- Chapter 3 Weight Prediction, Optimization, and Energy Efficiency -- 3.1 The Unity Equation -- 3.2 Early Weight Prediction -- 3.2.1 Empty Weight -- 3.3 Fuel Weight -- 3.3.1 Mission Fuel -- 3.3.2 Reserve Fuel -- 3.4 Take‐off Weight and the Weight Growth Factor -- 3.5 Example of an Early Weight Prediction -- 3.5.1 MTOW Sensitivity -- 3.6 Productivity and Energy Efficiency -- 3.6.1 Range for Maximum Productivity -- 3.6.2 Energy Efficiency -- 3.6.3 Conclusion -- Bibliography -- Chapter 4 Aerodynamic Phenomena in Supersonic Flow -- 4.1 Compressibility of Atmospheric Air -- 4.1.1 Speed of Sound and Mach Number -- 4.1.2 Compressible and Incompressible Flows -- 4.2 Streamlines and Mach Waves -- 4.2.1 Sound Waves -- 4.3 Shock Waves -- 4.4 Normal Shock Waves -- 4.4.1 Effects of Normal Shock Waves -- 4.5 Planar Oblique Shock Waves -- 4.6 Curved and Detached Shock waves -- 4.7 Expansion Flows -- 4.8 Shock‐expansion Technique.

4.9 Leading‐edge Delta Vortices -- 4.10 Sonic Boom -- Bibliography -- Chapter 5 Thin Wings in Two‐dimensional Flow -- 5.1 Small Perturbation Flow -- 5.1.1 Linearized Velocity Potential Equation -- 5.1.2 Pressure Coefficient -- 5.1.3 Lift Gradient -- 5.1.4 Pressure Drag -- 5.1.5 Symmetric Airfoils with Minimum Pressure Drag -- 5.1.6 Total Drag -- 5.1.7 Center of Pressure -- 5.1.8 Concluding Remarks -- Bibliography -- Chapter 6 Flat Wings in Inviscid Supersonic Flow -- 6.1 Classification of Edge Flows -- 6.2 Linear Theory for Three‐dimensional Inviscid Flow -- 6.2.1 Flow Reversal Theorems -- 6.2.2 Constant‐chord Straight Wings -- 6.2.3 Constant‐chord Swept Wings -- 6.3 Slender Wings -- 6.4 Delta Wing -- 6.4.1 Supersonic Leading Edge -- 6.4.2 Subsonic Leading Edge -- 6.5 Arrow Wings -- 6.6 Slender Delta and Arrow Wing Varieties -- Bibliography -- Chapter 7 Aerodynamic Drag in Cruising Flight -- 7.1 Categories of Drag Contributions -- 7.1.1 Miscellaneous Drag Terms and the Concept Drag Area -- 7.1.2 Analysis Methods -- 7.2 Skin Friction Drag -- 7.2.1 Friction Coefficient -- 7.2.2 Flat‐plate Analogy -- 7.2.3 Form Drag -- 7.3 Slender Body Wave Drag -- 7.3.1 Conical Forebody Pressure Drag -- 7.3.2 Von Kármán's Ogive -- 7.3.3 Sear-Haack Body -- 7.4 Zero‐lift Drag of Flat Delta Wings -- 7.4.1 Drag due to Lift -- 7.4.2 Vortex‐induced Drag -- 7.4.3 Wave Drag Due to Lift -- 7.5 Wing‐alone Glide Ratio -- 7.5.1 Notched Trailing Edges -- 7.5.2 Zero‐lift Drag -- 7.5.3 Induced Drag -- 7.5.4 Minimum Glide Ratio -- 7.6 Fuselage‐alone Drag -- 7.6.1 Pressure Drag -- 7.6.2 Skin Friction Drag -- 7.6.3 Fuselage Slenderness Ratio -- Bibliography -- Chapter 8 Aerodynamic Efficiency of SCV Configurations -- 8.1 Interaction Between Configuration Shape and Drag -- 8.2 Configuration (A) -- 8.2.1 Slenderness ratio and lift coefficient for minimum drag.

8.2.2 Cruise Altitude for Minimum Drag -- 8.3 Configuration B -- 8.3.1 Glide Ratio -- 8.3.2 Cruise Altitude and Wing Loading -- 8.4 Full‐configuration Drag -- 8.4.1 Configuration Glide Ratio -- 8.4.2 Notch Ratio Selection -- 8.5 Selection of the General Arrangement -- 8.5.1 Fore‐plane Versus After‐tail -- 8.5.2 Application of the Area Rule -- Bibliography -- Chapter 9 Aerodynamics of Cambered Wings -- 9.1 Flat Delta Wing Lift Gradient and Induced Drag -- 9.1.1 Achievable Leading‐edge Thrust -- 9.2 Warped Wings -- Bibliography -- Chapter 10 Oblique Wing Aircraft -- 10.1 Advantages of the Oblique Wing -- 10.2 Practical Advantages of the Oblique Wing -- 10.3 Oblique Wing Transport Aircraft -- 10.4 Oblique Flying Wing (OFW) -- 10.4.1 OFW Flying Qualities and Disadvantages -- 10.5 Conventional and OWB Configurations Compared -- 10.5.1 Practical Side‐effects -- 10.6 Conclusion -- Bibliography -- Index -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.