Springer Handbook of Robotics.
Material type:
- text
- computer
- online resource
- 9783319325521
- 629.8/92
- TJ212-225
Intro -- Foreword -- Foreword -- Foreword -- Foreword -- Preface to the Second Edition -- Preface to the Multimedia Extension -- About the Editors -- About the Part Editors -- About the Multimedia Editors -- List of Authors -- Contents -- List of Abbreviations -- 1 Robotics and the Handbook -- 1.1 A Brief History of Robotics -- 1.2 The Robotics Community -- 1.3 This Handbook -- Video-References -- Part A Robotics Foundations -- 2 Kinematics -- 2.1 Overview -- 2.2 Position and Orientation Representation -- 2.3 Joint Kinematics -- 2.4 Geometric Representation -- 2.5 Workspace -- 2.6 Forward Kinematics -- 2.7 Inverse Kinematics -- 2.8 Forward Instantaneous Kinematics -- 2.9 Inverse Instantaneous Kinematics -- 2.10 Static Wrench Transmission -- 2.11 Conclusions and Further Reading -- References -- 3 Dynamics -- 3.1 Overview -- 3.2 Spatial Vector Notation -- 3.3 Canonical Equations -- 3.4 Dynamic Models of Rigid-Body Systems -- 3.5 Kinematic Trees -- 3.6 Kinematic Loops -- 3.7 Conclusions and Further Reading -- References -- 4 Mechanism and Actuation -- 4.1 Overview -- 4.2 System Features -- 4.3 Kinematics and Kinetics -- 4.4 Serial Robots -- 4.5 Parallel Robots -- 4.6 Mechanical Structure -- 4.7 Joint Mechanisms -- 4.8 Actuators -- 4.9 Robot Performance -- 4.10 Conclusions and Further Reading -- Video-References -- References -- 5 Sensing and Estimation -- 5.1 Introduction -- 5.2 The Perception Process -- 5.3 Sensors -- 5.4 Estimation Processes -- 5.5 Representations -- 5.6 Conclusions and Further Readings -- References -- 6 Model Identification -- 6.1 Overview -- 6.2 Kinematic Calibration -- 6.3 Inertial Parameter Estimation -- 6.4 Identifiability and Numerical Conditioning -- 6.5 Conclusions and Further Reading -- Video-References -- References -- 7 Motion Planning -- 7.1 Robotics Motion Planning -- 7.2 Motion Planning Concepts.
7.3 Sampling-Based Planning -- 7.4 Alternative Approaches -- 7.5 Differential Constraints -- 7.6 Extensions and Variations -- 7.7 Advanced Issues -- 7.8 Conclusions and Further Reading -- Video-References -- References -- 8 Motion Control -- 8.1 Introduction to Motion Control -- 8.2 Joint Space Versus Operational Space Control -- 8.3 Independent-Joint Control -- 8.4 PID Control -- 8.5 Tracking Control -- 8.6 Computed-Torque Control -- 8.7 Adaptive Control -- 8.8 Optimal and Robust Control -- 8.9 Trajectory Generation and Planning -- 8.10 Digital Implementation -- 8.11 Learning Control -- Video-References -- References -- 9 Force Control -- 9.1 Background -- 9.2 Indirect Force Control -- 9.3 Interaction Tasks -- 9.4 Hybrid Force/Motion Control -- 9.5 Conclusions and Further Reading -- Video-References -- References -- 10 Redundant Robots -- 10.1 Overview -- 10.2 Task-Oriented Kinematics -- 10.3 Inverse Differential Kinematics -- 10.4 Redundancy Resolution via Optimization -- 10.5 Redundancy Resolution via Task Augmentation -- 10.6 Second-Order Redundancy Resolution -- 10.7 Cyclicity -- 10.8 Fault Tolerance -- 10.9 Conclusion and Further Reading -- Video-References -- References -- 11 Robots with Flexible Elements -- 11.1 Robots with Flexible Joints -- 11.2 Robots with Flexible Links -- Video-References -- References -- 12 Robotic Systems Architectures and Programming -- 12.1 Overview -- 12.2 History -- 12.3 Architectural Components -- 12.4 Case Study - GRACE -- 12.5 The Art of Robot Architectures -- 12.6 Implementing Robotic Systems Architectures -- 12.7 Conclusions and Further Reading -- Video-References -- References -- 13 Behavior-Based Systems -- 13.1 Robot Control Approaches -- 13.2 Basic Principles of Behavior-Based Systems -- 13.3 Basis Behaviors -- 13.4 Representation in Behavior-Based Systems -- 13.5 Learning in Behavior-Based Systems.
13.6 Applications and Continuing Work -- 13.7 Conclusions and Further Reading -- Video-References -- References -- 14 AI Reasoning Methods for Robotics -- 14.1 Why Should a Robot Use AI-Type Reasoning? -- 14.2 Knowledge Representation and Processing -- 14.3 Reasoning and Decision Making -- 14.4 Plan-Based Robot Control -- 14.5 Conclusions and Further Reading -- Video-References -- References -- 15 Robot Learning -- 15.1 What Is Robot Learning -- 15.2 Model Learning -- 15.3 Reinforcement Learning -- 15.4 Conclusions -- Video-References -- References -- Part B Design -- 16 Design and Performance Evaluation -- 16.1 The Robot Design Process -- 16.2 Workspace Criteria -- 16.3 Dexterity Indices -- 16.4 Other Performance Indices -- 16.5 Other Robot Types -- 16.6 Summary -- References -- 17 Limbed Systems -- 17.1 Design of Limbed Systems -- 17.2 Conceptual Design -- 17.3 Whole Design Process Example -- 17.4 Model Induced Design -- 17.5 Various Limbed Systems -- 17.6 Performance Indices -- Video-References -- References -- 18 Parallel Mechanisms -- 18.1 Definitions -- 18.2 Type Synthesis of Parallel Mechanisms -- 18.3 Kinematics -- 18.4 Velocity and Accuracy Analysis -- 18.5 Singularity Analysis -- 18.6 Workspace Analysis -- 18.7 Static Analysis -- 18.8 Dynamic Analysis -- 18.9 Design -- 18.10 Wire-Driven Parallel Robots -- 18.11 Application Examples -- 18.12 Conclusion and Further Reading -- Video-References -- References -- 19 Robot Hands -- 19.1 Basic Concepts -- 19.2 Design of Robot Hands -- 19.3 Technologies for Actuation and Sensing -- 19.4 Modeling and Control of a Robot Hand -- 19.5 Applications and Trends -- 19.6 Conclusions and Further Reading -- Video-References -- References -- 20 Snake-Like and Continuum Robots -- 20.1 Snake Robots - Short History -- 20.2 Continuum Robots - Short History -- 20.3 Snake-Like and Continuum Robot Modeling.
20.4 Modeling of Locomotion for Snake-Like and Continuum Mechanisms -- 20.5 Conclusion and Extensions to Related Areas -- Video-References -- References -- 21 Actuators for Soft Robotics -- 21.1 Background -- 21.2 Soft Robot Design -- 21.3 Modeling Actuators for Soft Robotics -- 21.4 Modeling Soft Robots -- 21.5 Stiffness Estimation -- 21.6 Cartesian Stiffness Control -- 21.7 Periodic Motion Control -- 21.8 Optimal Control of Soft Robots -- 21.9 Conclusions and Open Problems -- Video-References -- References -- 22 Modular Robots -- 22.1 Concepts and Definitions -- 22.2 Reconfigurable Modular Manipulators -- 22.3 Self-Reconfigurable Modular Robots -- 22.4 Conclusion and Further Reading -- Video-References -- References -- 23 Biomimetic Robots -- 23.1 Overview -- 23.2 Components of Biomimetic Robot Design -- 23.3 Mechanisms -- 23.4 Material and Fabrication -- 23.5 Conclusion -- Video-References -- References -- 24 Wheeled Robots -- 24.1 Overview -- 24.2 Mobility of Wheeled Robots -- 24.3 Wheeled Robot Structures -- 24.4 Wheel-Terrain Interaction Models -- 24.5 Wheeled Robot Suspensions -- 24.6 Conclusions -- Video-References -- References -- 25 Underwater Robots -- 25.1 Background -- 25.2 Mechanical Systems -- 25.3 Power Systems -- 25.4 Underwater Actuators and Sensors -- 25.5 Computers, Communications, and Architecture -- 25.6 Underwater Manipulators -- 25.7 Conclusions and Further Reading -- Video-References -- References -- 26 Flying Robots -- 26.1 Background and History -- 26.2 Characteristics of Aerial Robotics -- 26.3 Basics of Aerodynamics and Flight Mechanics -- 26.4 Airplane Modeling and Design -- 26.5 Rotorcraft Modeling and Design -- 26.6 Flapping Wing Modeling and Design -- 26.7 System Integration and Realization -- 26.8 Applications of Aerial Robots -- 26.9 Conclusions and Further Reading -- Video-References -- References.
27 Micro-/Nanorobots -- 27.1 Overview of Micro- and Nanorobotics -- 27.2 Scaling -- 27.3 Actuation at the Micro- and Nanoscales -- 27.4 Imaging at the Micro- and Nanoscales -- 27.5 Fabrication -- 27.6 Microassembly -- 27.7 Microrobotics -- 27.8 Nanorobotics -- 27.9 Conclusions -- Video-References -- References -- Part C Sensing and Perception -- 28 Force and Tactile Sensing -- 28.1 Overview -- 28.2 Sensor Types -- 28.3 Tactile Information Processing -- 28.4 Integration Challenges -- 28.5 Conclusions and Future Developments -- Video-References -- References -- 29 Inertial Sensing, GPS and Odometry -- 29.1 Odometry -- 29.2 Gyroscopic Systems -- 29.3 Accelerometers -- 29.4 IMU Packages -- 29.5 Satellite-Based Positioning (GPS and GNSS) -- 29.6 GPS-IMU Integration -- 29.7 Further Reading -- 29.8 Currently Available Hardware -- References -- 30 Sonar Sensing -- 30.1 Sonar Principles -- 30.2 Sonar Beam Pattern -- 30.3 Speed of Sound -- 30.4 Waveforms -- 30.5 Transducer Technologies -- 30.6 Reflecting Object Models -- 30.7 Artifacts -- 30.8 TOF Ranging -- 30.9 Echo Waveform Coding -- 30.10 Echo Waveform Processing -- 30.11 CTFM Sonar -- 30.12 Multipulse Sonar -- 30.13 Sonar Rings and Arrays -- 30.14 Motion Effects -- 30.15 Biomimetic Sonars -- 30.16 Conclusions -- Video-References -- References -- 31 Range Sensing -- 31.1 Range Sensing Basics -- 31.2 Sensor Technologies -- 31.3 Registration -- 31.4 Navigation and Terrain Classification and Mapping -- 31.5 Conclusions and Further Reading -- References -- 32 3-D Vision for Navigation and Grasping -- 32.1 Geometric Vision -- 32.2 3-D Vision for Grasping -- 32.3 Conclusion and Further Reading -- Video-References -- References -- 33 Visual Object Class Recognition -- 33.1 Object Classes -- 33.2 Review of the State of the Art -- 33.3 Discussion and Conclusions -- References -- 34 Visual Servoing.
34.1 The Basic Components of Visual Servoing.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.