ORPP logo
Image from Google Jackets

The Nutrient Roadmap.

By: Material type: TextTextPublisher: Alexandria : Water Environment Federation, 2015Copyright date: ©2015Edition: 1st edDescription: 1 online resource (190 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781572783218
Subject(s): Genre/Form: Additional physical formats: Print version:: The Nutrient RoadmapDDC classification:
  • 631.86900000000003
LOC classification:
  • TD758.5.N87 .W38 2015
Online resources:
Contents:
Intro -- List of Figures -- List of Tables -- Preface -- Executive Summary Grant Weaver, P.E. -- Chapter 1 Introduction Val S. Frenkel, Ph.D., P.E., D.WRE -- 1.0 PURPOSE OF THE NUTRIENT ROADMAP -- 1.1 Timing of The Nutrient Roadmap -- 1.2 From Wastewater Treatment to Resource Recovery -- 2.0 DRIVERS FOR CHANGE -- 2.1 Population Growth -- 2.2 Environmental Concerns -- 2.3 Clean Water -- 3.0 REGULATORY ASPECTS -- 4.0 FUTURE TRENDS -- 5.0 REFERENCES -- Chapter 2 Setting the Stage for Nutrient Management Jeanette Brown, P.E., BCEE, D. WRE, F.WEF -- Robert R. Sharp, Ph.D., P.E., BCEE -- and Elisa Garvey, Ph.D., P.E. -- 1.0 DEVELOPING THE VISION FOR NUTRIENT REMOVAL -- 1.1 Drivers -- 1.1.1 Regulatory Requirements -- 1.1.2 Watershed Water Quality and Total Maximum Daily Loads -- 1.1.3 Effects of Nutrient Management Beyond the Watershed -- 1.2 Developing a Vision for Staff -- 1.2.1 Setting Short- and Long-Term Goals -- 1.2.2 Determining Treatment Level to Meet Goals -- 1.2.2.1 Low-Hanging Fruit: Low-Cost Modifications to Achieve Some Benefit -- 1.2.2.2 Nutrient Removal Versus Nutrient Recovery -- 1.2.2.3 Understanding Effects on Energy Use and Budgets -- 1.2.2.4 Associated Goals -- 1.3 Stakeholder Involvement -- 2.0 STAFF EDUCATION AND DEVELOPMENT -- 2.1 Making Training a Requirement for All -- 2.1.1 Basic Understanding of Nutrient Removal Theory -- 2.1.2 Understanding Current Practices -- 2.2 Ensuring High-Quality and Appropriate Training for Various Staff Levels -- 2.3 Understanding Emerging Technologies and Their Potential Place in the Industry -- 2.4 Empowering Staff -- 2.4.1 Allowing Staff to Make Changes to Meet Visionary Goals -- 2.4.2 Allowing Staff to Be Part of the Decision-Making Process -- 3.0 FINANCING -- 3.1 Developing a Short- and Long-Term Strategy -- 3.2 Identifying the Costs -- 3.2.1 Capital Costs -- 3.2.2 Operating Costs.
3.2.3 Staff Development -- 3.3 Identifying Sources -- 3.3.1 Loans -- 3.3.2 Grants -- 3.3.3 User Rates -- 3.4 Identifying Alternate Financing Opportunities -- 3.4.1 Private Versus Public Finance and Operations -- 3.4.2 Alternative Project Delivery -- 3.5 Identifying Revenue Streams -- 3.5.1 Nutrient Recovery and Sale of Materials -- 3.5.2 Nutrient Credit Trading Programs -- 4.0 PLANNING AND PRIORITIZATION TO ACHIEVE COMPLIANCE -- 4.1 Planning to Meet Current and Future Regulatory Requirements -- 4.2 Water Quality Trading -- 4.3 Effects of Nutrient Management Beyond the Watershed -- 5.0 ESTABLISHING ASPIRATIONAL GOALS AND SUBGOALS -- 5.1 Nitrogen and Phosphorus Recovery -- 5.2 Energy and Water Recovery -- 6.0 BECOMING CLIMATE READY -- 7.0 REFERENCES -- Chapter 3 Understanding the Environment Brandon Koltz -- Sara Arabi, Ph.D., P.Eng. -- -- 1.0 INTRODUCTION -- 2.0 EXISTING AND POTENTIAL FUTURE REGULATORY REQUIREMENTS -- 3.0 WATER QUALITY RESPONSE TO NUTRIENT LOADING-UNDERSTANDING THE RECEIVING WATER ENVIRONMENT -- 3.1 Site Conceptual Model -- 3.1.1 Environmental Response Endpoints of Concern Related to Nutrient Loads -- 3.1.2 Sources of Nutrient Loads -- 3.1.3 Linking Nutrient Loads to Environmental Response -- 3.2 Modeling to Understand Load-Response Relationships -- 3.3 Data Requirements and Assessment -- 3.4 Developing Nutrient Load Targets -- 4.0 EVALUATE WATER RESOURCE RECOVERY FACILITY EXISTING PERFORMANCE -- 4.1 Robust Data for Influent, Effluent, Sidestreams, and Biosolids -- 4.1.1 Nitrogen Species -- 4.1.2 Phosphorus Species -- 4.1.3 Carbon -- 4.1.4 Flows -- 4.1.5 Identify and Fill Data Gaps -- 4.2 Evaluate Averages, Ranges of Values, Daily, Weekly, and Seasonal Loads -- 4.3 Determine Removal/Recovery -- 4.3.1 Statistical Analysis -- 4.3.2 Variability -- 4.4 Energy Considerations -- 4.4.1 Usage by Unit Process -- 4.4.2 Energy Production.
4.5 Estimate Greenhouse Gas Emissions -- 5.0 SOURCES AND CHARACTERISTICS OF NUTRIENTS TO THE WATER RESOURCE RECOVERY FACILITY -- 6.0 DEVELOP PROCESS MODEL TO EVALUATE PROCESS MODIFICATIONS/ADDITIONS TO MEET PROPOSED OR ALTERNATE EFFLUENT LIMITS/PERMIT CONDITIONS -- 6.1 Evaluate, Select, and Utilize a Process Model -- 6.2 Optimization of Existing Systems -- 6.3 Sidestream Treatment and Nutrient Recovery -- 6.4 Process Addition -- 6.5 Effluent Nutrient Loading and Concentration -- 6.6 Resource Recovery -- 6.7 Energy and Chemical Considerations -- 6.8 Greenhouse Gas Emissions -- 6.9 Cost -- 7.0 ALTERNATIVES AND DECISION-MAKING -- 7.1 Process Modifications -- 7.2 Source Control -- 7.3 Trading -- 7.4 Adaptive Management -- 7.5 Seasonal Limits -- 7.6 Variance (Socioeconomic Effects) -- 7.7 Loadings Versus Concentration Permit Conditions -- 7.8 Informed Decisions -- 8.0 REFERENCES -- Chapter 4 Resource Recovery Jane Madden, P.E., BCEE -- 1.0 INTRODUCTION -- 1.1 The Water-Nutrient-Energy Nexus -- 1.2 Impetus Behind Nutrient Recovery -- 1.3 Economics of Resource Recovery -- 2.0 BENEFICIAL USE OF BIOSOLIDS -- 2.1 Introduction and History of Biosolids Management -- 2.2 The Future of Biosolids Management -- 2.3 Considerations for Resource Recovery with Biosolids -- 2.3.1 Facility Size -- 2.3.2 Facility Location -- 2.3.3 Existing Infrastructure -- 2.3.4 Regional Economics -- 2.3.5 Regulations -- 2.4 Options for Resource Recovery of Biosolids -- 2.4.1 Land Application -- 2.4.2 Digestion -- 2.4.3 Incineration -- 2.4.4 Other Thermal Processes -- 3.0 NUTRIENT RECOVERY FROM THE TREATMENT PROCESS -- 3.1 Introduction -- 3.2 Sidestream Treatment -- 3.2.1 Struvite Precipitation -- 3.2.2 Waste Activated Sludge Treatment -- 3.2.3 Ammonia Removal -- 3.3 Fertilizer Manufacturing -- 3.4 Algae Treatment -- 4.0 WATER REUSE -- 4.1 Introduction -- 4.2 Potable Reuse.
4.3 Irrigation -- 4.4 Water for Energy Production -- 4.5 Effect of Effluent Reuse on Total Maximum Daily Load -- 5.0 OTHER RESOURCE RECOVERY -- 5.1 Metals -- 5.2 Chemical Recovery -- 5.3 Heat -- 5.4 Alternative Carbon Sources (for Nutrient Removal) -- 6.0 REFERENCES -- Chapter 5 Alternatives Evaluation Rod Reardon -- Erik R. Coats, P.E., Ph.D. -- Elisa Garvey -- Matthew Gregg, P.E. -- and Jose Christiano Machado Jr., Ph.D., P.E. -- 1.0 INTRODUCTION -- 2.0 OVERVIEW OF APPROACHES AND TECHNOLOGIES FOR CONTROLLING NUTRIENTS FROM NONPOINT (DIFFUSE) SOURCES -- 2.1 Nonpoint Sources of Nutrients -- 2.2 Approaches and Technologies -- 3.0 OVERVIEW OF POINT-SOURCE NUTRIENT REMOVAL TECHNOLOGIES -- 3.1 The Baseline-Conventional Secondary Treatment -- 3.2 Nitrogen Removal -- 3.2.1 The Nitrogen Cycle and Biological Nitrogen Removal -- 3.2.1.1 Nitrification (Including Nitritation) -- 3.2.1.2 Denitrification (Including Deammonification) -- 3.2.1.3 Inhibition -- 3.2.2 Nitrification -- 3.2.2.1 Suspended-Growth Processes -- 3.2.2.2 Attached-Growth Processes -- 3.2.2.3 Hybrid Processes -- 3.2.3 Denitrification -- 3.2.3.1 Suspended-Growth Processes -- 3.2.3.2 Attached-Growth Processes -- 3.2.3.3 Hybrid Processes -- 3.2.4 Simultaneous Nitrification and Denitrification -- 3.2.5 Shortcut Nitrogen Removal (Nitritation-Denitritation) and Deammonification -- 3.4 Phosphorus Removal -- 3.4.1 Chemical Phosphorus Removal -- 3.4.2 Biological Phosphorus Removal -- 3.4.3 Biological Phosphorus Removal with Chemical Trimming -- 3.5 Combined Nitrogen and Phosphorus Removal -- 4.0 THE FOUNDATION-SET OBJECTIVES (FOR THE LOCAL AUTHORITY) -- 4.1 Regulatory Driven -- 4.2 Considerations in Technology Selection -- 5.0 THE FIRST STEP-ESTABLISH BASIC REQUIREMENTS -- 5.1 Define Effluent Requirements -- 5.2 Characterize Influent -- 5.2.1 Flows/Loads -- 5.2.2 Carbon Types, Magnitude, and Ratios.
5.2.3 Nutrient Loads -- 5.2.4 Alkalinity and pH -- 5.2.5 Potential Toxicity -- 5.2.6 Temperature -- 5.2.7 Wet Weather Characteristics -- 5.3 Establish Evaluation Methodology -- 5.3.1 Arbitrary Methods -- 5.3.2 Informal Methods -- 5.3.3 Formal Methods -- 5.4 Establish Selection Criteria -- 6.0 THE NEXT LEVEL-CONCEPTUAL PROCESS COMPARISONS -- 6.1 The Universe of Possibilities -- 6.2 Screening -- 7.0 COST COMPARISONS -- 7.1 Selection of Design Criteria -- 7.2 Preliminary Sizing -- 7.3 Ability to Use Existing Assets -- 7.4 Cost of Conservatism -- 7.5 Historical Costs for Nutrient Reduction -- 8.0 INNOVATION -- 9.0 OTHER CONSIDERATIONS -- 9.1 Testing -- 9.2 Mathematical Models -- 9.3 Patents -- 10.0 THE LAST STEP-THE FINAL CHOICE -- 11.0 FOLLOW THROUGH -- 11.1 Training -- 11.2 Startup and Testing -- 11.3 Optimization -- 12.0 REFERENCES -- Chapter 6 Identifying and Managing Risks James D. Fitzpatrick, P.E. -- Francisco J. Cubas, Ph.D. -- Heather M. Phillips, P.E., BCEE -- and Michael B. Tate, P.E. -- 1.0 INTRODUCTION -- 2.0 SITE-SPECIFIC ECOSYSTEM RESPONSE -- 2.1 Phosphorus Load Reduction Uncertainties -- 2.2 Nitrogen Load Reduction Uncertainties -- 3.0 REGULATORY FRAMEWORK -- 4.0 FINANCIAL RISKS -- 5.0 TREATMENT PROCESS RISKS -- 5.1 Changes to Influent Characteristics -- 5.1.1 Climates and Seasons -- 5.1.2 Industrial Source Control -- 5.1.3 Collection System Design, Operation, and Maintenance -- 5.2 Wet Weather Flow Management -- 5.3 Biosolids Management -- 5.4 Integration of New Processes and Technologies -- 5.4.1 Operations and Maintenance -- 5.4.2 Design of Facilities -- 5.4.3 Process Modeling -- 6.0 INNOVATION RISKS -- 7.0 INFRASTRUCTURE RISKS -- 8.0 REFERENCES -- Chapter 7 Case Studies Zeynep Erdal, Ph.D., P.E. -- 1.0 INTRODUCTION -- 2.0 CITY OF CONRAD WATER RESOURCE RECOVERY FACILITY -- 3.0 CLEAN WATER SERVICES.
4.0 MARLBOROUGH WESTERLY WASTEWATER TREATMENT FACILITY.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- List of Figures -- List of Tables -- Preface -- Executive Summary Grant Weaver, P.E. -- Chapter 1 Introduction Val S. Frenkel, Ph.D., P.E., D.WRE -- 1.0 PURPOSE OF THE NUTRIENT ROADMAP -- 1.1 Timing of The Nutrient Roadmap -- 1.2 From Wastewater Treatment to Resource Recovery -- 2.0 DRIVERS FOR CHANGE -- 2.1 Population Growth -- 2.2 Environmental Concerns -- 2.3 Clean Water -- 3.0 REGULATORY ASPECTS -- 4.0 FUTURE TRENDS -- 5.0 REFERENCES -- Chapter 2 Setting the Stage for Nutrient Management Jeanette Brown, P.E., BCEE, D. WRE, F.WEF -- Robert R. Sharp, Ph.D., P.E., BCEE -- and Elisa Garvey, Ph.D., P.E. -- 1.0 DEVELOPING THE VISION FOR NUTRIENT REMOVAL -- 1.1 Drivers -- 1.1.1 Regulatory Requirements -- 1.1.2 Watershed Water Quality and Total Maximum Daily Loads -- 1.1.3 Effects of Nutrient Management Beyond the Watershed -- 1.2 Developing a Vision for Staff -- 1.2.1 Setting Short- and Long-Term Goals -- 1.2.2 Determining Treatment Level to Meet Goals -- 1.2.2.1 Low-Hanging Fruit: Low-Cost Modifications to Achieve Some Benefit -- 1.2.2.2 Nutrient Removal Versus Nutrient Recovery -- 1.2.2.3 Understanding Effects on Energy Use and Budgets -- 1.2.2.4 Associated Goals -- 1.3 Stakeholder Involvement -- 2.0 STAFF EDUCATION AND DEVELOPMENT -- 2.1 Making Training a Requirement for All -- 2.1.1 Basic Understanding of Nutrient Removal Theory -- 2.1.2 Understanding Current Practices -- 2.2 Ensuring High-Quality and Appropriate Training for Various Staff Levels -- 2.3 Understanding Emerging Technologies and Their Potential Place in the Industry -- 2.4 Empowering Staff -- 2.4.1 Allowing Staff to Make Changes to Meet Visionary Goals -- 2.4.2 Allowing Staff to Be Part of the Decision-Making Process -- 3.0 FINANCING -- 3.1 Developing a Short- and Long-Term Strategy -- 3.2 Identifying the Costs -- 3.2.1 Capital Costs -- 3.2.2 Operating Costs.

3.2.3 Staff Development -- 3.3 Identifying Sources -- 3.3.1 Loans -- 3.3.2 Grants -- 3.3.3 User Rates -- 3.4 Identifying Alternate Financing Opportunities -- 3.4.1 Private Versus Public Finance and Operations -- 3.4.2 Alternative Project Delivery -- 3.5 Identifying Revenue Streams -- 3.5.1 Nutrient Recovery and Sale of Materials -- 3.5.2 Nutrient Credit Trading Programs -- 4.0 PLANNING AND PRIORITIZATION TO ACHIEVE COMPLIANCE -- 4.1 Planning to Meet Current and Future Regulatory Requirements -- 4.2 Water Quality Trading -- 4.3 Effects of Nutrient Management Beyond the Watershed -- 5.0 ESTABLISHING ASPIRATIONAL GOALS AND SUBGOALS -- 5.1 Nitrogen and Phosphorus Recovery -- 5.2 Energy and Water Recovery -- 6.0 BECOMING CLIMATE READY -- 7.0 REFERENCES -- Chapter 3 Understanding the Environment Brandon Koltz -- Sara Arabi, Ph.D., P.Eng. -- -- 1.0 INTRODUCTION -- 2.0 EXISTING AND POTENTIAL FUTURE REGULATORY REQUIREMENTS -- 3.0 WATER QUALITY RESPONSE TO NUTRIENT LOADING-UNDERSTANDING THE RECEIVING WATER ENVIRONMENT -- 3.1 Site Conceptual Model -- 3.1.1 Environmental Response Endpoints of Concern Related to Nutrient Loads -- 3.1.2 Sources of Nutrient Loads -- 3.1.3 Linking Nutrient Loads to Environmental Response -- 3.2 Modeling to Understand Load-Response Relationships -- 3.3 Data Requirements and Assessment -- 3.4 Developing Nutrient Load Targets -- 4.0 EVALUATE WATER RESOURCE RECOVERY FACILITY EXISTING PERFORMANCE -- 4.1 Robust Data for Influent, Effluent, Sidestreams, and Biosolids -- 4.1.1 Nitrogen Species -- 4.1.2 Phosphorus Species -- 4.1.3 Carbon -- 4.1.4 Flows -- 4.1.5 Identify and Fill Data Gaps -- 4.2 Evaluate Averages, Ranges of Values, Daily, Weekly, and Seasonal Loads -- 4.3 Determine Removal/Recovery -- 4.3.1 Statistical Analysis -- 4.3.2 Variability -- 4.4 Energy Considerations -- 4.4.1 Usage by Unit Process -- 4.4.2 Energy Production.

4.5 Estimate Greenhouse Gas Emissions -- 5.0 SOURCES AND CHARACTERISTICS OF NUTRIENTS TO THE WATER RESOURCE RECOVERY FACILITY -- 6.0 DEVELOP PROCESS MODEL TO EVALUATE PROCESS MODIFICATIONS/ADDITIONS TO MEET PROPOSED OR ALTERNATE EFFLUENT LIMITS/PERMIT CONDITIONS -- 6.1 Evaluate, Select, and Utilize a Process Model -- 6.2 Optimization of Existing Systems -- 6.3 Sidestream Treatment and Nutrient Recovery -- 6.4 Process Addition -- 6.5 Effluent Nutrient Loading and Concentration -- 6.6 Resource Recovery -- 6.7 Energy and Chemical Considerations -- 6.8 Greenhouse Gas Emissions -- 6.9 Cost -- 7.0 ALTERNATIVES AND DECISION-MAKING -- 7.1 Process Modifications -- 7.2 Source Control -- 7.3 Trading -- 7.4 Adaptive Management -- 7.5 Seasonal Limits -- 7.6 Variance (Socioeconomic Effects) -- 7.7 Loadings Versus Concentration Permit Conditions -- 7.8 Informed Decisions -- 8.0 REFERENCES -- Chapter 4 Resource Recovery Jane Madden, P.E., BCEE -- 1.0 INTRODUCTION -- 1.1 The Water-Nutrient-Energy Nexus -- 1.2 Impetus Behind Nutrient Recovery -- 1.3 Economics of Resource Recovery -- 2.0 BENEFICIAL USE OF BIOSOLIDS -- 2.1 Introduction and History of Biosolids Management -- 2.2 The Future of Biosolids Management -- 2.3 Considerations for Resource Recovery with Biosolids -- 2.3.1 Facility Size -- 2.3.2 Facility Location -- 2.3.3 Existing Infrastructure -- 2.3.4 Regional Economics -- 2.3.5 Regulations -- 2.4 Options for Resource Recovery of Biosolids -- 2.4.1 Land Application -- 2.4.2 Digestion -- 2.4.3 Incineration -- 2.4.4 Other Thermal Processes -- 3.0 NUTRIENT RECOVERY FROM THE TREATMENT PROCESS -- 3.1 Introduction -- 3.2 Sidestream Treatment -- 3.2.1 Struvite Precipitation -- 3.2.2 Waste Activated Sludge Treatment -- 3.2.3 Ammonia Removal -- 3.3 Fertilizer Manufacturing -- 3.4 Algae Treatment -- 4.0 WATER REUSE -- 4.1 Introduction -- 4.2 Potable Reuse.

4.3 Irrigation -- 4.4 Water for Energy Production -- 4.5 Effect of Effluent Reuse on Total Maximum Daily Load -- 5.0 OTHER RESOURCE RECOVERY -- 5.1 Metals -- 5.2 Chemical Recovery -- 5.3 Heat -- 5.4 Alternative Carbon Sources (for Nutrient Removal) -- 6.0 REFERENCES -- Chapter 5 Alternatives Evaluation Rod Reardon -- Erik R. Coats, P.E., Ph.D. -- Elisa Garvey -- Matthew Gregg, P.E. -- and Jose Christiano Machado Jr., Ph.D., P.E. -- 1.0 INTRODUCTION -- 2.0 OVERVIEW OF APPROACHES AND TECHNOLOGIES FOR CONTROLLING NUTRIENTS FROM NONPOINT (DIFFUSE) SOURCES -- 2.1 Nonpoint Sources of Nutrients -- 2.2 Approaches and Technologies -- 3.0 OVERVIEW OF POINT-SOURCE NUTRIENT REMOVAL TECHNOLOGIES -- 3.1 The Baseline-Conventional Secondary Treatment -- 3.2 Nitrogen Removal -- 3.2.1 The Nitrogen Cycle and Biological Nitrogen Removal -- 3.2.1.1 Nitrification (Including Nitritation) -- 3.2.1.2 Denitrification (Including Deammonification) -- 3.2.1.3 Inhibition -- 3.2.2 Nitrification -- 3.2.2.1 Suspended-Growth Processes -- 3.2.2.2 Attached-Growth Processes -- 3.2.2.3 Hybrid Processes -- 3.2.3 Denitrification -- 3.2.3.1 Suspended-Growth Processes -- 3.2.3.2 Attached-Growth Processes -- 3.2.3.3 Hybrid Processes -- 3.2.4 Simultaneous Nitrification and Denitrification -- 3.2.5 Shortcut Nitrogen Removal (Nitritation-Denitritation) and Deammonification -- 3.4 Phosphorus Removal -- 3.4.1 Chemical Phosphorus Removal -- 3.4.2 Biological Phosphorus Removal -- 3.4.3 Biological Phosphorus Removal with Chemical Trimming -- 3.5 Combined Nitrogen and Phosphorus Removal -- 4.0 THE FOUNDATION-SET OBJECTIVES (FOR THE LOCAL AUTHORITY) -- 4.1 Regulatory Driven -- 4.2 Considerations in Technology Selection -- 5.0 THE FIRST STEP-ESTABLISH BASIC REQUIREMENTS -- 5.1 Define Effluent Requirements -- 5.2 Characterize Influent -- 5.2.1 Flows/Loads -- 5.2.2 Carbon Types, Magnitude, and Ratios.

5.2.3 Nutrient Loads -- 5.2.4 Alkalinity and pH -- 5.2.5 Potential Toxicity -- 5.2.6 Temperature -- 5.2.7 Wet Weather Characteristics -- 5.3 Establish Evaluation Methodology -- 5.3.1 Arbitrary Methods -- 5.3.2 Informal Methods -- 5.3.3 Formal Methods -- 5.4 Establish Selection Criteria -- 6.0 THE NEXT LEVEL-CONCEPTUAL PROCESS COMPARISONS -- 6.1 The Universe of Possibilities -- 6.2 Screening -- 7.0 COST COMPARISONS -- 7.1 Selection of Design Criteria -- 7.2 Preliminary Sizing -- 7.3 Ability to Use Existing Assets -- 7.4 Cost of Conservatism -- 7.5 Historical Costs for Nutrient Reduction -- 8.0 INNOVATION -- 9.0 OTHER CONSIDERATIONS -- 9.1 Testing -- 9.2 Mathematical Models -- 9.3 Patents -- 10.0 THE LAST STEP-THE FINAL CHOICE -- 11.0 FOLLOW THROUGH -- 11.1 Training -- 11.2 Startup and Testing -- 11.3 Optimization -- 12.0 REFERENCES -- Chapter 6 Identifying and Managing Risks James D. Fitzpatrick, P.E. -- Francisco J. Cubas, Ph.D. -- Heather M. Phillips, P.E., BCEE -- and Michael B. Tate, P.E. -- 1.0 INTRODUCTION -- 2.0 SITE-SPECIFIC ECOSYSTEM RESPONSE -- 2.1 Phosphorus Load Reduction Uncertainties -- 2.2 Nitrogen Load Reduction Uncertainties -- 3.0 REGULATORY FRAMEWORK -- 4.0 FINANCIAL RISKS -- 5.0 TREATMENT PROCESS RISKS -- 5.1 Changes to Influent Characteristics -- 5.1.1 Climates and Seasons -- 5.1.2 Industrial Source Control -- 5.1.3 Collection System Design, Operation, and Maintenance -- 5.2 Wet Weather Flow Management -- 5.3 Biosolids Management -- 5.4 Integration of New Processes and Technologies -- 5.4.1 Operations and Maintenance -- 5.4.2 Design of Facilities -- 5.4.3 Process Modeling -- 6.0 INNOVATION RISKS -- 7.0 INFRASTRUCTURE RISKS -- 8.0 REFERENCES -- Chapter 7 Case Studies Zeynep Erdal, Ph.D., P.E. -- 1.0 INTRODUCTION -- 2.0 CITY OF CONRAD WATER RESOURCE RECOVERY FACILITY -- 3.0 CLEAN WATER SERVICES.

4.0 MARLBOROUGH WESTERLY WASTEWATER TREATMENT FACILITY.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.