ORPP logo
Image from Google Jackets

Actuators and Their Applications : Fundamentals, Principles, Materials, and Emerging Technologies.

By: Contributor(s): Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2020Copyright date: ©2020Edition: 1st edDescription: 1 online resource (273 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119662709
Subject(s): Genre/Form: Additional physical formats: Print version:: Actuators and Their ApplicationsDDC classification:
  • 621
LOC classification:
  • TJ223.A25 .A288 2020
Online resources:
Contents:
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Piezoelectric Actuators and Their Applications -- 1.1 Introduction -- 1.2 Types of Actuators -- 1.3 Piezoelectric Actuators -- 1.4 Conclusions -- References -- Chapter 2 Design Considerations for Shape Memory Alloy-Based Control Applications -- 2.1 State of the Art in Shape Memory Alloy- An Introduction -- 2.1.1 SMA Actuators in a Feedback Control System -- 2.1.2 Factors to be Considered -- 2.1.2.1 Different Types of Functionality-Actuator -- 2.1.2.2 Self-Sensing Actuation -- 2.1.2.3 Sensor-Actuated Isothermal (SMA) -- 2.1.3 Configurations of SMA Employed -- 2.1.3.1 Agonist-Antagonist Configuration -- 2.1.3.2 Synergistic Configuration -- Case Study 2.1 Governor Valve -- Case Study 2.2 Structural Health Monitoring -- Case Study 2.3 Medical Staples -- Acknowledgment -- References -- Chapter 3 Actuators in Mechatronics -- 3.1 Introduction -- 3.2 Mechatronics System -- 3.3 Structure of Mechatronics System -- 3.3.1 Elements and Structures of Mechatronics Systems -- 3.4 Actuators -- 3.4.1 Components of Actuation System -- 3.4.2 Types of Actuators -- 3.5 Actuator Components -- 3.5.1 Hydraulics and Pneumatics -- 3.5.2 Electric Actuators -- 3.6 Applications of Actuators in Mechatronics System -- References -- Chapter 4 Actuators Based on Hydrogels -- 4.1 Introduction -- 4.2 Hydrogel Synthesis -- 4.2.1 Chemically Crosslinked -- 4.2.2 Physically Crosslinked -- 4.3 Experimental: Radical Polymerizations -- 4.3.1 General Recommendations -- 4.4 Mechanical Properties -- 4.4.1 Characterization by Rheology -- 4.4.2 Determination of Viscoelastic Linear Range -- 4.4.3 Swelling Kinetics -- 4.4.4 Experimental Determination of the Swelling Mechanism -- 4.4.5 Study of the Network Parameters -- 4.4.6 Hydrogel Swelling and Porosity of the Network.
4.4.7 Experimental Determination of Pore Morphology of a Hydrogel -- 4.5 pH-Sensitive Hydrogels -- 4.6 Thermosensitive Hydrogels -- 4.7 Composite Materials Containing Hydrogels -- 4.8 Ion-Printing -- 4.9 Electroosmotic Effect-Donnan -- 4.10 Graphene Modified Hydrogels -- 4.11 Actuator Geometry -- 4.11.1 Deformation Behavior According to Hydrogel Moulding -- 4.11.1.1 Rods -- 4.11.1.2 Sheets -- 4.11.1.3 Other Geometries -- 4.12 Actuators as Fluid Reservoir -- 4.13 Actuator Based on Hydrogels for Medical Applications -- 4.14 Conclusions and Future Perspectives -- Acknowledgments -- References -- Chapter 5 Smart Polymer-Based Chemical Sensors -- 5.1 Introduction -- 5.2 Immobilization Strategies for the Development of Polymer-Based Sensors -- 5.2.1 Langmuir-Blodgett (LB) Technique -- 5.2.2 Layer-by-Layer (LbL) Self-Assembled Technique -- 5.2.3 Covalent Binding -- 5.2.4 Affinity-Based Binding -- 5.3 Approaches for Chemical Detection -- 5.3.1 Surface Acoustic Wave (SAW) -- 5.3.2 Quartz Crystal Microbalance (QCM) -- 5.3.3 Chemiresistor -- 5.3.4 Optical Approach -- 5.4 Polymer for Detection of Various Chemical Moieties -- 5.4.1 Polymer-Based Sensors for Gases Detection -- 5.4.2 Polymer-Based Sensors for Volatile Organic Compounds Detection -- 5.4.3 Polymer-Based Sensors for Ion Detection -- 5.4.4 Polymer-Based Sensors for pH Sensing -- 5.4.5 Polymer-Based Sensors for Humidity Sensing -- 5.5 Outlook and Perspectives -- References -- Chapter 6 Shape Memory Actuators -- 6.1 Introduction -- 6.2 Classification of Shape Memory Actuators -- 6.2.1 Shape Memory Alloy Actuators -- 6.2.1.1 Types of Shape Memory Effect -- 6.2.1.2 Basics About SMA Actuators -- 6.2.1.3 Technically Suitable Shape Memory Alloys and Their Properties -- 6.2.1.4 Factors Affecting SMA Actuators -- 6.2.1.5 Applications of SMA in Actuation -- 6.2.2 Shape Memory Polymer Actuators.
6.2.2.1 Classification of Polymeric Actuators -- Applications of Polymer Actuators -- References -- Chapter 7 Stimuli-Responsive Conducting Polymer Composites: Recent Progress and Future Prospects -- 7.1 Introduction -- 7.2 Conductive Polymers (CPs) -- 7.3 Consequences of CPs -- 7.4 Synthesis or Polymerization of Most Widely Used CPs for Actuator Applications Such as PPy and PANI -- 7.4.1 Polymerization of Polypyrrole -- 7.4.2 Synthesis of PANI -- 7.4.3 CPs Composites as Actuators -- 7.4.4 CPs as Electrodes for Actuators -- 7.4.5 Tunable CP Membrane-Based Actuators -- 7.4.6 Nanoporous Gold/CPs Composite-Based Metallic Muscles -- 7.4.7 CP-Based Nano-Fibrous Bundle for Artificial Muscles -- 7.4.8 CP as Fibrous Actuator -- 7.4.9 CPs Composite-Based Flapping Wing Actuator -- 7.4.10 CPs Composite-Based Micro-Gripper System -- 7.5 Summary and Future Perspective of CPs Composites-Based Actuators -- Acknowledgements -- References -- Chapter 8 Fluid Power Actuators -- 8.1 Introduction -- 8.2 Classification of Actuators -- 8.2.1 Linear Actuator or Cylinders -- 8.2.2 Rotary Actuator or Motors -- 8.2.3 Semi-Rotary Actuators -- 8.3 Hydraulic Actuator -- 8.4 Pneumatic Actuator -- 8.4.1 Single-Acting Cylinders -- 8.4.1.1 Gravity Return SAC -- 8.4.1.2 SAC With Spring Return -- 8.4.2 Double-Acting Cylinder -- 8.4.2.1 DAC With Piston Rod on One Side -- 8.4.2.2 DAC With Piston Rod on Both Sides -- 8.5 Telescopic Cylinder -- 8.6 Tandem Cylinder -- 8.7 Research Towards the Applications of Pneumatic Fluid Power Actuators -- 8.7.1 Novel Micro-Pneumatic Actuator for MEMS -- 8.8 Research Towards the Applications of Hydraulic Fluid Power Actuators -- References -- Chapter 9 Conducting Polymer/Hydrogel Systems as Soft Actuators -- 9.1 Introduction -- 9.2 Conducting Polymers as Actuators: A Brief Description -- 9.2.1 Mechanism of CP Actuation.
9.2.2 Merits and Demerits of CP Actuators -- 9.3 Conducting Polymer/Hydrogel Systems as Actuators -- 9.3.1 Importance of Conducting Polymer/Hydrogel Systems -- 9.3.2 Conducting Polymer/Hydrogel-Based Actuators in Literature -- 9.3.3 Fabrication of Conducting Polymer Hydrogels -- 9.3.3.1 Polymerization CP Within a Prefabricated Hydrogel Matrix -- 9.3.3.2 CP-Hydrogels Formed by Blending of CP with Hydrogel -- 9.3.3.3 Polymerization of CP in the Presence of Matrix Polymer Solution/Dispersion -- 9.3.3.4 CP-Hydrogels Formed from Mixed Precursors -- 9.3.3.5 Synthesis of CP Gels by Cross-Linking with Dopant Molecule -- 9.3.4 Polyaniline/Hydrogel Systems as Actuators -- 9.3.5 Polypyrrole/Hydrogel Systems as Actuators -- 9.3.6 Polythiophene/Hydrogel Systems as Actuators -- 9.3.7 Factors Affecting Actuation -- 9.4 Conclusion and Future Outlook -- References -- Index -- Also of Interest -- Check out these other forthcoming and published titles from Scrivener Publishing -- Other Books of Interest: -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Piezoelectric Actuators and Their Applications -- 1.1 Introduction -- 1.2 Types of Actuators -- 1.3 Piezoelectric Actuators -- 1.4 Conclusions -- References -- Chapter 2 Design Considerations for Shape Memory Alloy-Based Control Applications -- 2.1 State of the Art in Shape Memory Alloy- An Introduction -- 2.1.1 SMA Actuators in a Feedback Control System -- 2.1.2 Factors to be Considered -- 2.1.2.1 Different Types of Functionality-Actuator -- 2.1.2.2 Self-Sensing Actuation -- 2.1.2.3 Sensor-Actuated Isothermal (SMA) -- 2.1.3 Configurations of SMA Employed -- 2.1.3.1 Agonist-Antagonist Configuration -- 2.1.3.2 Synergistic Configuration -- Case Study 2.1 Governor Valve -- Case Study 2.2 Structural Health Monitoring -- Case Study 2.3 Medical Staples -- Acknowledgment -- References -- Chapter 3 Actuators in Mechatronics -- 3.1 Introduction -- 3.2 Mechatronics System -- 3.3 Structure of Mechatronics System -- 3.3.1 Elements and Structures of Mechatronics Systems -- 3.4 Actuators -- 3.4.1 Components of Actuation System -- 3.4.2 Types of Actuators -- 3.5 Actuator Components -- 3.5.1 Hydraulics and Pneumatics -- 3.5.2 Electric Actuators -- 3.6 Applications of Actuators in Mechatronics System -- References -- Chapter 4 Actuators Based on Hydrogels -- 4.1 Introduction -- 4.2 Hydrogel Synthesis -- 4.2.1 Chemically Crosslinked -- 4.2.2 Physically Crosslinked -- 4.3 Experimental: Radical Polymerizations -- 4.3.1 General Recommendations -- 4.4 Mechanical Properties -- 4.4.1 Characterization by Rheology -- 4.4.2 Determination of Viscoelastic Linear Range -- 4.4.3 Swelling Kinetics -- 4.4.4 Experimental Determination of the Swelling Mechanism -- 4.4.5 Study of the Network Parameters -- 4.4.6 Hydrogel Swelling and Porosity of the Network.

4.4.7 Experimental Determination of Pore Morphology of a Hydrogel -- 4.5 pH-Sensitive Hydrogels -- 4.6 Thermosensitive Hydrogels -- 4.7 Composite Materials Containing Hydrogels -- 4.8 Ion-Printing -- 4.9 Electroosmotic Effect-Donnan -- 4.10 Graphene Modified Hydrogels -- 4.11 Actuator Geometry -- 4.11.1 Deformation Behavior According to Hydrogel Moulding -- 4.11.1.1 Rods -- 4.11.1.2 Sheets -- 4.11.1.3 Other Geometries -- 4.12 Actuators as Fluid Reservoir -- 4.13 Actuator Based on Hydrogels for Medical Applications -- 4.14 Conclusions and Future Perspectives -- Acknowledgments -- References -- Chapter 5 Smart Polymer-Based Chemical Sensors -- 5.1 Introduction -- 5.2 Immobilization Strategies for the Development of Polymer-Based Sensors -- 5.2.1 Langmuir-Blodgett (LB) Technique -- 5.2.2 Layer-by-Layer (LbL) Self-Assembled Technique -- 5.2.3 Covalent Binding -- 5.2.4 Affinity-Based Binding -- 5.3 Approaches for Chemical Detection -- 5.3.1 Surface Acoustic Wave (SAW) -- 5.3.2 Quartz Crystal Microbalance (QCM) -- 5.3.3 Chemiresistor -- 5.3.4 Optical Approach -- 5.4 Polymer for Detection of Various Chemical Moieties -- 5.4.1 Polymer-Based Sensors for Gases Detection -- 5.4.2 Polymer-Based Sensors for Volatile Organic Compounds Detection -- 5.4.3 Polymer-Based Sensors for Ion Detection -- 5.4.4 Polymer-Based Sensors for pH Sensing -- 5.4.5 Polymer-Based Sensors for Humidity Sensing -- 5.5 Outlook and Perspectives -- References -- Chapter 6 Shape Memory Actuators -- 6.1 Introduction -- 6.2 Classification of Shape Memory Actuators -- 6.2.1 Shape Memory Alloy Actuators -- 6.2.1.1 Types of Shape Memory Effect -- 6.2.1.2 Basics About SMA Actuators -- 6.2.1.3 Technically Suitable Shape Memory Alloys and Their Properties -- 6.2.1.4 Factors Affecting SMA Actuators -- 6.2.1.5 Applications of SMA in Actuation -- 6.2.2 Shape Memory Polymer Actuators.

6.2.2.1 Classification of Polymeric Actuators -- Applications of Polymer Actuators -- References -- Chapter 7 Stimuli-Responsive Conducting Polymer Composites: Recent Progress and Future Prospects -- 7.1 Introduction -- 7.2 Conductive Polymers (CPs) -- 7.3 Consequences of CPs -- 7.4 Synthesis or Polymerization of Most Widely Used CPs for Actuator Applications Such as PPy and PANI -- 7.4.1 Polymerization of Polypyrrole -- 7.4.2 Synthesis of PANI -- 7.4.3 CPs Composites as Actuators -- 7.4.4 CPs as Electrodes for Actuators -- 7.4.5 Tunable CP Membrane-Based Actuators -- 7.4.6 Nanoporous Gold/CPs Composite-Based Metallic Muscles -- 7.4.7 CP-Based Nano-Fibrous Bundle for Artificial Muscles -- 7.4.8 CP as Fibrous Actuator -- 7.4.9 CPs Composite-Based Flapping Wing Actuator -- 7.4.10 CPs Composite-Based Micro-Gripper System -- 7.5 Summary and Future Perspective of CPs Composites-Based Actuators -- Acknowledgements -- References -- Chapter 8 Fluid Power Actuators -- 8.1 Introduction -- 8.2 Classification of Actuators -- 8.2.1 Linear Actuator or Cylinders -- 8.2.2 Rotary Actuator or Motors -- 8.2.3 Semi-Rotary Actuators -- 8.3 Hydraulic Actuator -- 8.4 Pneumatic Actuator -- 8.4.1 Single-Acting Cylinders -- 8.4.1.1 Gravity Return SAC -- 8.4.1.2 SAC With Spring Return -- 8.4.2 Double-Acting Cylinder -- 8.4.2.1 DAC With Piston Rod on One Side -- 8.4.2.2 DAC With Piston Rod on Both Sides -- 8.5 Telescopic Cylinder -- 8.6 Tandem Cylinder -- 8.7 Research Towards the Applications of Pneumatic Fluid Power Actuators -- 8.7.1 Novel Micro-Pneumatic Actuator for MEMS -- 8.8 Research Towards the Applications of Hydraulic Fluid Power Actuators -- References -- Chapter 9 Conducting Polymer/Hydrogel Systems as Soft Actuators -- 9.1 Introduction -- 9.2 Conducting Polymers as Actuators: A Brief Description -- 9.2.1 Mechanism of CP Actuation.

9.2.2 Merits and Demerits of CP Actuators -- 9.3 Conducting Polymer/Hydrogel Systems as Actuators -- 9.3.1 Importance of Conducting Polymer/Hydrogel Systems -- 9.3.2 Conducting Polymer/Hydrogel-Based Actuators in Literature -- 9.3.3 Fabrication of Conducting Polymer Hydrogels -- 9.3.3.1 Polymerization CP Within a Prefabricated Hydrogel Matrix -- 9.3.3.2 CP-Hydrogels Formed by Blending of CP with Hydrogel -- 9.3.3.3 Polymerization of CP in the Presence of Matrix Polymer Solution/Dispersion -- 9.3.3.4 CP-Hydrogels Formed from Mixed Precursors -- 9.3.3.5 Synthesis of CP Gels by Cross-Linking with Dopant Molecule -- 9.3.4 Polyaniline/Hydrogel Systems as Actuators -- 9.3.5 Polypyrrole/Hydrogel Systems as Actuators -- 9.3.6 Polythiophene/Hydrogel Systems as Actuators -- 9.3.7 Factors Affecting Actuation -- 9.4 Conclusion and Future Outlook -- References -- Index -- Also of Interest -- Check out these other forthcoming and published titles from Scrivener Publishing -- Other Books of Interest: -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.