Electric System Operations : Evolving to the Modern Grid, Second Edition.
Material type:
- text
- computer
- online resource
- 9781630816896
- 621.30999999999995
- TK1001 .V333 2020
Intro -- Electric System Operations Evolving to the Modern Grid, Second Edition -- Foreword -- Preface -- Acknowledgments -- CHAPTER 1 Introduction -- 1.1 Introduction to Utilities -- 1.2 Electric Utility Explained -- 1.2.1 Generation -- 1.2.2 Transmission -- 1.2.3 Subtransmission -- 1.2.4 Distribution -- 1.2.5 Customer -- 1.3 Electric Utilities: A U.S. Historical Perspective -- 1.3.1 First Came PUHCA -- 1.3.2 Along Came Deregulation -- 1.3.3 Then Came Smart Grid -- 1.3.4 A Global Outlook -- 1.4 Utilities and Regulation -- 1.5 Utility Types and Other Nontraditional Utility-Like Entities -- 1.5.1 IOUs -- 1.5.2 Publicly Owned Utilities -- 1.5.3 Cooperatives -- 1.5.4 RTOs and ISOs -- 1.5.5 Federal Utilities -- 1.5.6 Community Choice Aggregate -- 1.5.7 Aggregators -- 1.5.8 Independent Power Producers -- Endnotes -- CHAPTER 2 Define System Operations -- 2.1 System Operations -- 2.2 Key Drivers for Systems Operations -- 2.2.1 Impact of Drivers on Distribution -- 2.2.2 Impact of Drivers on Transmission -- 2.3 What Changes from Transmission to Distribution System Operations? -- 2.3.1 New Technologies and Integration Points -- 2.3.2 Network Configuration -- 2.3.3 Accuracy of the Power System Model -- 2.3.4 Component Location -- 2.3.5 Three-Phase versus Single-Phase -- 2.3.6 Level of Observability -- 2.4 Distribution System Operations: An Introduction -- 2.5 Key Challenges Facing System Operations -- Endnotes -- CHAPTER 3 Introduction to Power Systems -- 3.1 Basic Electric Components -- 3.1.1 Capacitors and Reactors -- 3.1.2 Transformers -- 3.1.3 Switches -- 3.1.4 Relays and Protection Equipment -- 3.1.5 Kilovolt Classes or Common Voltage Levels -- 3.1.6 Busbars -- 3.1.7 Substations -- 3.1.8 Smart Inverters -- 3.1.9 Microgrid -- 3.2 Key Power System Physical Concepts Explained -- 3.2.1 The Basics: Voltage and Current -- 3.2.2 Ohm's Law.
3.2.3 Kirchhoff's Laws -- 3.2.4 DC versus AC -- 3.2.5 Complex Power Representation -- 3.2.6 Power Factor -- 3.2.7 Three-Phase versus Single Phase -- 3.2.8 Six-Phase Transmission System -- 3.2.9 Phasors -- 3.2.10 Superconductivity in Transmission Lines and Transformers -- 3.2.11 Bold® Transmission Line -- 3.3 Key Business Concepts Explained -- 3.3.1 Utility Interconnected System -- 3.3.2 Control Area or Balancing Authority Areas -- 3.3.3 Renewable Energy Zones -- Endnotes -- CHAPTER 4 Impact of Deregulation on System Operations -- 4.1 Wholesale Markets -- 4.1.1 The New Participants and Their Activities -- 4.1.2 Summary Description of the Participants and How They Interact -- 4.1.3 Architectural Discussion -- 4.2 Retail Markets -- 4.2.1 ERCOT -- 4.2.2 NY REV and the Emergence of the DSO -- 4.3 Key Retail Market Constructs -- 4.3.1 Transactive Energy -- 4.3.2 Customer Choice Aggregate -- 4.3.3 Energy Imbalance Market -- 4.3.4 Renewable Energy Buyers Alliance -- 4.3.5 Summarizing Retail Markets and Their Impacts to System Operations -- 4.4 Case Studies -- 4.4.1 Case Study 1: Energy Imbalance Market-PacifiCorp -- 4.4.2 Case Study 2: Simple Energy VPP -- 4.5 History of Deregulation -- 4.6 Summary -- Endnotes -- CHAPTER 5 Impact of Grid Modernization on System Operations -- 5.1 Setting the Context -- 5.2 Conceptual View of a Modern Grid -- 5.3 Defining Key Terms -- 5.4 Smart Grid Changes Impacting System Operations -- 5.5 Community Changes Impacting System Operations -- 5.5.1 DERs -- 5.5.2 Electric Transportation -- 5.5.3 Microgrids -- 5.5.4 Smart Appliances and the Advent of the Smart Home -- 5.6 What Does All This Mean for the System Operator? -- 5.7 Impact of Smart Grid on New Systems -- 5.7.1 MDMS -- 5.7.2 OMS -- 5.7.3 GIS -- 5.7.4 ADMS -- 5.7.5 Distributed Energy Resources Management System -- 5.8 Cybersecurity -- 5.9 Case Studies.
5.9.1 Case Study #1: Smart Grid Technology Increasing Reliability for PPL Customers -- 5.9.2 Case Study #2: How Smart Sensors Improved Reliability at FPL -- Endnotes -- CHAPTER 6 Business of System Operations -- 6.1 Anatomy of a Regulated Utility -- 6.1.1 Generation Business -- 6.1.2 Transmission and Distribution -- 6.1.3 Customer -- 6.1.4 Storage and other NWA between Generation and T& -- D -- 6.2 T& -- D Operating Model -- 6.2.1 Asset Management and System Planning -- 6.2.2 Asset Owner -- 6.2.3 Work and Resource Management -- 6.2.4 Field Execution -- 6.3 Other Utility-Like Entities -- 6.3.1 RTO/ISO -- 6.3.2 CCA -- 6.3.3 Aggregators or REPs -- 6.4 The Regulatory Regime -- 6.4.1 State Level: PUC -- 6.4.2 Federal Level: FERC -- 6.4.3 Regulation for Municipalities and Cooperatives -- 6.5 Architecting the Business of System Operations -- 6.5.1 Drivers -- 6.5.2 Strategy -- 6.5.3 People -- 6.5.4 Process -- 6.5.5 Technology -- 6.6 System Operations Processes -- 6.6.1 Monitor and Execute Real-Time Operations -- 6.6.2 Manage Planned Events -- 6.6.3 Manage Unplanned Events -- 6.6.4 Coordinate Emergency Response -- 6.6.5 Plan Daily Operations -- 6.6.6 Perform System Analysis -- 6.6.7 Report Operational Performance -- 6.7 Changes to the Business of System Operations -- 6.7.1 DER -- 6.7.2 NWA -- 6.7.3 Electric Transportation -- 6.8 Case Studies -- 6.8.1 Case Study 1: California's Move Toward Distributed Generation -- 6.8.2 Case Study 2: Navigating the California Duck Curve -- Endnotes -- CHAPTER 7 Control Center: The Hub of System Operations -- 7.1 Organization of Work -- 7.2 Transmission Control Center -- 7.2.1 Transmission Desk -- 7.2.2 Generation Desk -- 7.2.3 Energy and Transmission Scheduling Desk -- 7.2.4 Other Support Desks -- 7.3 Distribution Control Center -- 7.3.1 Clearance Desk -- 7.3.2 Switching Desk -- 7.3.3 Other Support Desks.
7.4 Other Key Aspects of a Control Center -- 7.5 Introducing a High-Performing System Operator -- 7.6 Case Studies -- 7.6.1 Case Study 1: Impact of Automation on the Control Center of the Future -- 7.6.2 Case Study 2: Control Centers Backing Each Other Up -- Endnotes -- CHAPTER 8 Energy Management Systems -- 8.1 How an EMS Supports the System Operator's Mandate -- 8.1.1 Transmission Operator -- 8.1.2 Generation Operator -- 8.1.3 RTO/ISO -- 8.1.4 RTO/Wholesale Market Participant -- 8.2 Key Components of an EMS -- 8.2.1 EMS Hardware -- 8.2.2 EMS Software -- 8.2.3 EMS Databases -- 8.2.4 EMS UI -- 8.3 EMS Application Suites -- 8.3.1 SCADA -- 8.3.2 Network Apps -- 8.3.3 Generation Apps -- 8.3.4 Dispatching Training Simulator -- 8.3.5 WAMS -- 8.3.6 Modeling Apps -- 8.4 Case Studies -- 8.4.1 Case Study 1: Use of WAMS Implementations to Analyze the Northeast Blackout of 2003 -- 8.4.2 Case Study 2: Implementation of a Hierarchical EMS -- Endnotes -- CHAPTER 9 Outage Management System -- 9.1 Types of Outages -- 9.1.1 Transmission Outages -- 9.1.2 Distribution Outages -- 9.2 Origins of the OMS -- 9.2.1 The Paper Age -- 9.2.2 The Move to an OMS -- 9.3 The Architecture of an OMS -- 9.3.1 Outage Engine -- 9.3.2 Key Interfaces -- 9.3.3 Customer Portal -- 9.3.4 Report -- 9.3.5 Operator User Interface -- 9.4 Impact of Smart Meter on the OMS -- 9.4.1 Key Smart Meter Outage Support Characteristics -- 9.4.2 Smart Meter Preprocessing -- 9.5 Outage Customer Experience -- 9.5.1 Estimated Time of Restoration and What It Means -- 9.5.2 Forecasting Outages and Damage Prediction -- 9.5.3 Damage Assessment -- 9.5.4 Control Center as the Information Hub for Outages and Damage -- 9.6 The Business of Managing Outages -- 9.7 The Future of OMS? -- Endnotes -- CHAPTER 10 Advanced Distribution Management System -- 10.1 Introduction to the ADMS.
10.2 The Utility Context: Why Is an ADMS Needed? -- 10.2.1 Greater Standards for Customer Satisfaction -- 10.2.2 Decision Tools -- 10.2.3 Reduced Outage, Whether Planned or Unplanned, Duration -- 10.2.4 Ability to Process Real-Time Data Quickly -- 10.2.5 Disaster Recovery -- 10.2.6 Increased Manageability of the Distribution Infrastructure -- 10.2.7 ADMS Is a Tool for Optimizing Employee and System Performance -- 10.3 ADMS: An Architectural Description -- 10.4 How the ADMS Supports the System Operator's Mandate -- 10.5 How the ADMS Supports the Smart (Modern) Grid -- 10.6 Key Component of an ADMS -- 10.6.1 ADMS Hardware -- 10.6.2 ADMS Databases -- 10.6.3 ADMS UI -- 10.6.4 ADMS Software -- 10.7 ADMS Application Components -- 10.7.1 Core Applications -- 10.7.2 Advanced Applications -- 10.7.3 Distribution Automation Applications -- 10.7.4 Integrating Applications -- 10.8 ADMS Models and Its Interface with GIS -- 10.8.1 Complete and Accurate Data -- 10.8.2 Strong Supporting Functions -- 10.8.3 Robust Integration -- 10.9 What Changes at a Utility When an ADMS Is Implemented? -- 10.10 Case Studies -- 10.10.1 Case Study 1: Small Utility ADMS Implementation-Bluebonnet Electric Cooperative -- 10.10.2 Case Study 2: Large Utility ADMS Implementation-Pennsylvania Power and Light -- 10.11 The Future of ADMS -- Endnotes -- CHAPTER 11 Distributed Energy Resource Management System -- 11.1 DERs and Establishing the Need for a DERMS System -- 11.2 What Is Complicating This Situation? -- 11.2.1 Data Deluge or Tsunami -- 11.2.2 Multiple Noncoordinated Demand Response Programs -- 11.2.3 Management Reporting -- 11.2.4 Continued Customer Apathy -- 11.3 DERMS Architecture -- 11.3.1 Core Components of a DERMS -- 11.3.2 What Makes DERMS a Necessary System? -- 11.4 Who Would Use This System? -- 11.5 Service Models That Need to Be Considered -- 11.6 Challenges.
11.7 Case Studies.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.