ORPP logo
Image from Google Jackets

Fundamentals of Heat Engines : Reciprocating and Gas Turbine Internal Combustion Engines.

By: Material type: TextTextSeries: Wiley-ASME Press SeriesPublisher: Newark : John Wiley & Sons, Incorporated, 2020Copyright date: ©2019Edition: 1st edDescription: 1 online resource (535 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119548782
Subject(s): Genre/Form: Additional physical formats: Print version:: Fundamentals of Heat EnginesDDC classification:
  • 621.4025
LOC classification:
  • TJ255 .G465 2020
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- Series Preface -- Preface -- Glossary -- About the Companion Website -- Part I Fundamentals of Engineering Science -- Introduction I: Role of Engineering Science -- Chapter 1 Review of Basic Principles -- 1.1 Engineering Mechanics -- 1.1.1 Definitions -- 1.1.2 Newton's Laws of Motion -- 1.1.3 Rectilinear Work and Energy -- 1.1.4 Circular Motion -- 1.1.4.1 Uniform Circular Motion of a Particle -- 1.1.5 Rotating Rigid‐Body Kinetics -- 1.1.6 Moment, Couple, and Torque -- 1.1.7 Accelerated and Decelerated Shafts -- 1.1.8 Angular Momentum (Moment of Momentum) -- 1.1.9 Rotational Work, Power, and Kinetic Energy -- 1.2 Fluid Mechanics -- 1.2.1 Fluid Properties -- 1.2.1.1 Mass and Weight -- 1.2.1.2 Pressure -- 1.2.1.3 Compressibility -- 1.2.1.4 Viscosity -- 1.2.2 Fluid Flow -- 1.2.2.1 General Energy Equation -- 1.2.3 Acoustic Velocity (Speed of Sound) -- 1.2.4 Similitude and Dimensional Analysis -- 1.2.4.1 Dimensional Analysis -- 1.2.4.2 Buckingham Pi (π) Theorem -- 1.3 Thermodynamics -- 1.3.1 Work and Heat as Different Forms of Energy -- 1.3.2 Mixture of Gases -- 1.3.2.1 Dalton Model of Gas Mixtures -- 1.3.3 Processes in Ideal Gas Systems -- 1.3.3.1 Adiabatic Processes -- 1.3.3.2 Heat‐Only Process -- 1.3.3.3 Isothermal Process -- 1.3.3.4 Isochoric Process -- 1.3.3.5 Polytropic Process -- 1.3.4 Cycles -- 1.3.5 First Law of Thermodynamics -- 1.3.5.1 Non‐Flow Energy Equation -- 1.3.5.2 Steady‐Flow Energy Equation -- 1.3.5.3 Stagnation Properties -- 1.3.5.4 Isentropic Flow -- 1.3.5.5 Speed Parameter -- 1.3.5.6 Mass Flow Parameter -- 1.3.5.7 Applications of the Energy Equation -- 1.3.6 Second Law of Thermodynamics -- 1.3.6.1 Entropy -- 1.3.7 The Carnot Principle -- 1.3.8 Zeroth Law of Thermodynamics -- 1.3.8.1 Thermodynamic Scale of Temperature -- 1.3.9 Third Law of Thermodynamics -- Problems.
Chapter 2 Thermodynamics of Reactive Mixtures -- 2.1 Fuels -- 2.2 Stoichiometry -- 2.3 Chemical Reactions -- 2.3.1 Fuels Having a Single Chemical Formula -- 2.3.2 Multi‐Component Gaseous Fuels -- 2.3.3 Fuels with Known Mass Concentration of the Constituent Elements -- 2.3.3.1 Air‐Fuel Ratios -- 2.3.3.2 Products of Complete Combustion (λ ≥ 1) -- 2.3.3.3 Products of Incomplete Combustion (λ &lt -- 1) -- 2.4 Thermodynamic Properties of the Combustion Products -- 2.5 First Law Analysis of Reacting Mixtures -- 2.5.1 Non‐Flow Process with Chemical Reactions -- 2.5.2 Steady‐State System with Chemical Reactions -- 2.5.2.1 Enthalpy of Formation -- 2.5.2.2 Enthalpy of Reaction -- 2.6 Adiabatic Flame Temperature -- 2.6.1 Steady‐State Process -- 2.6.2 Constant‐Volume Combustion Process -- 2.7 Entropy Change in Reacting Mixtures -- 2.7.1 Absolute Entropy -- 2.8 Second Law Analysis of Reacting Mixtures -- 2.9 Chemical and Phase Equilibrium -- 2.9.1 Gibbs and Helmholtz Functions and Equilibrium -- 2.9.2 Equilibrium Constant -- 2.9.2.1 Equilibrium Constant of Formation -- 2.9.3 Dissociation and Equilibrium Composition -- 2.10 Multi‐Species Equilibrium Composition of Combustion Products -- 2.10.1 Frozen Composition -- 2.10.2 Equilibrium Composition -- 2.10.2.1 Six Species in the Products -- 2.10.2.2 Eleven Species in the Products -- 2.10.2.3 Eighteen Species in the Products -- Problems -- Part II Reciprocating Internal Combustion Engines -- Introduction II: History and Classification of Reciprocating Internal Combustion Engines -- Chapter 3 Ideal Cycles for Natural‐Induction Reciprocating Engines -- 3.1 Generalised Cycle -- 3.2 Constant‐Volume Cycle (Otto Cycle) -- 3.3 Constant Pressure (Diesel) Cycle -- 3.4 Dual Cycle (Pressure‐Limited Cycle) -- 3.5 Cycle Comparison -- Problems -- Chapter 4 Ideal Cycles for Forced‐Induction Reciprocating Engines.
4.1 Turbocharged Cycles -- 4.1.1 Turbocharged Engine with Constant‐Pressure Turbine -- 4.1.1.1 Thermal Efficiency -- 4.1.1.2 Mean Effective Pressure -- 4.1.2 Turbocharged Engine with Variable‐Pressure Turbine -- 4.1.2.1 Thermal Efficiency -- 4.1.2.2 Mean Effective Pressure -- 4.2 Supercharged Cycles -- 4.2.1 Thermal Efficiency -- 4.2.2 Mean Effective Pressure -- 4.3 Forced Induction Cycles with Intercooling -- 4.3.1 Cycle with Constant‐Pressure Turbine and Intercooling -- 4.3.1.1 Cooling Process -- 4.3.1.2 Thermal Efficiency -- 4.3.1.3 Mean Effective Pressure -- 4.3.2 Cycle with Variable‐Pressure Turbocharging and Intercooling -- 4.3.2.1 Cooling Process -- 4.3.2.2 Thermal Efficiency -- 4.3.2.3 Mean Effective Pressure -- 4.3.3 Cycle with Supercharging and Intercooling -- 4.3.3.1 Cooling Process -- 4.3.3.2 Thermal Efficiency -- 4.3.3.3 Mean Effective Pressure -- 4.4 Comparison of Boosted Cycles -- Problems -- Chapter 5 Fuel‐Air Cycles for Reciprocating Engines -- 5.1 Fuel‐Air Cycle Assumptions -- 5.2 Compression Process -- 5.3 Combustion Process -- 5.3.1 Constant‐Volume Combustion Cycle (Otto Cycle) -- 5.3.2 Constant‐Pressure Cycle (Diesel Cycle) -- 5.4 Expansion Process -- 5.5 Mean Effective Pressure -- 5.6 Cycle Comparison -- Problems -- Chapter 6 Practical Cycles for Reciprocating Engines -- 6.1 Four‐Stroke Engine -- 6.1.1 The Induction Process a − b − c − d − e -- 6.1.2 The Compression Process e − f -- 6.1.3 The Combustion and Expansion Processes f − g − h − i -- 6.1.4 The Exhaust Process i − j − a − b − c -- 6.2 Two‐Stroke Engine -- 6.2.1 Compression Processes 5 − 1 -- 6.2.2 Combustion and Expansion Processes 1 − b − c − 2 -- 6.2.3 Exhaust and Induction Processes 2 − 3 − a − 4 − 5 -- 6.3 Practical Cycles for Four‐Stroke Engines -- 6.3.1 Compression Ignition Engine (CI Engine) -- 6.3.1.1 Induction Process -- 6.3.1.2 Compression Process.
6.3.1.3 Combustion Process -- 6.3.1.4 The Expansion Process -- 6.3.1.5 Cycle Work and Mean Effective Pressure -- 6.3.2 Spark Ignition Engine (SI Engine) -- 6.3.2.1 Combustion Process -- 6.3.2.2 Expansion Process -- 6.3.2.3 Cycle Work and Mean Effective Pressure -- 6.3.3 Constant‐Pressure Combustion Engine -- 6.3.3.1 Combustion Process -- 6.3.3.2 Expansion Process -- 6.3.3.3 Cycle Work and Mean Effective Pressure -- 6.4 Cycle Comparison -- 6.5 Cycles Based on Combustion Modelling (Wiebe Function) -- 6.5.1 The Wiebe Function -- 6.5.2 Cycle Calculation Using Wiebe Function -- 6.6 Example of Wiebe Function Application -- 6.6.1 SI Engine -- 6.6.2 CI Engine -- 6.7 Double Wiebe Models -- 6.7.1 Rapid Combustion Phase -- 6.7.2 Diffusion Phase -- 6.8 Computer‐Aided Engine Simulation -- Problems -- Chapter 7 Work‐Transfer System in Reciprocating Engines -- 7.1 Kinematics of the Piston‐Crank Mechanism -- 7.2 Dynamics of the Reciprocating Mechanism -- 7.2.1 Mass‐Distribution Scheme -- 7.2.1.1 Masses at the Piston Pin -- 7.2.1.2 Masses at the Crank Pin -- 7.2.2 Forces Acting on the Reciprocating Mechanism -- 7.2.2.1 Forces Acting on the Piston Pin -- 7.2.2.2 Forces Acting on the Crank Pin -- 7.2.2.3 Forces and Moments Acting on the Crankshaft Supports at Point O -- 7.2.2.4 Resultant Forces Acting on the Crank Pin -- 7.2.2.5 Polar Diagram -- 7.2.2.6 Resultant Forces Acting on the Crankshaft Bearing Journals -- 7.3 Multi‐Cylinder Engines -- 7.3.1 Torque in Multi‐Cylinder Engines -- 7.3.1.1 Torque Uniformity Factor (TUF) -- 7.3.2 Engine‐Speed Fluctuations -- 7.4 Engine Balancing -- 7.4.1 Single‐Cylinder Engine -- 7.4.2 Multi‐Cylinder Engines -- 7.4.2.1 Two‐Cylinder Inline Engine -- 7.4.2.2 Two‐Cylinder V‐Engine -- 7.4.2.3 Balancing an Eight‐Cylinder V‐Engine -- 7.4.2.4 Other Engine Configurations -- Problems.
Chapter 8 Reciprocating Engine Performance Characteristics -- 8.1 Indicator Diagrams -- 8.2 Indicated Parameters -- 8.2.1 Indicated Work -- 8.2.2 Indicated Power -- 8.2.3 Indicated Specific Fuel Consumption -- 8.2.4 Indicated Efficiency -- 8.2.5 Indicated Mean Effective Pressure -- 8.2.6 Indicated Power -- 8.3 Brake Parameters -- 8.3.1 Brake‐Specific Fuel Consumption -- 8.3.2 Brake Efficiency -- 8.3.3 Brake Mean Effective Pressure -- 8.3.4 Brake Power -- 8.4 Engine Design Point and Performance -- 8.4.1 Design Point Calculations -- 8.4.2 Engine Performance Characteristics -- 8.5 Off‐Design Performance -- 8.5.1 Speed Characteristics -- 8.5.2 Load Characteristics -- 8.5.2.1 SI Engines -- 8.5.2.2 CI Engines -- Problems -- Part III Gas Turbine Internal Combustion Engines -- Introduction III: History and Classification of Gas Turbines -- Chapter 9 Air‐Standard Gas Turbine Cycles -- 9.1 Joule‐Brayton Ideal Cycle -- 9.2 Cycle with Heat Exchange (Regeneration) -- 9.3 Cycle with Reheat -- 9.4 Cycle with Intercooling -- 9.5 Cycle with Heat Exchange and Reheat -- 9.6 Cycle with Heat Exchange and Intercooling -- 9.7 Cycle with Heat Exchange, Reheat, and Intercooling -- 9.8 Cycle Comparison -- Problems -- Chapter 10 Irreversible Air‐Standard Gas Turbine Cycles -- 10.1 Component Efficiencies -- 10.1.1 Compressor Isentropic Efficiency -- 10.1.2 Turbine Isentropic Efficiency -- 10.1.3 Polytropic (Small‐Stage) Compressor Efficiency -- 10.1.4 Polytropic (Small‐Stage) Turbine Efficiency -- 10.2 Simple Irreversible Cycle -- 10.3 Irreversible Cycle with Heat Exchange (Regenerative Irreversible Cycle) -- 10.4 Irreversible Cycle with Reheat -- 10.5 Irreversible Cycle with Intercooling -- 10.6 Irreversible Cycle with Heat Exchange and Reheat -- 10.7 Irreversible Cycle with Heat Exchange and Intercooling -- 10.8 Irreversible Cycle with Heat Exchange, Reheat, and Intercooling.
10.9 Comparison of Irreversible Cycles.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- Series Preface -- Preface -- Glossary -- About the Companion Website -- Part I Fundamentals of Engineering Science -- Introduction I: Role of Engineering Science -- Chapter 1 Review of Basic Principles -- 1.1 Engineering Mechanics -- 1.1.1 Definitions -- 1.1.2 Newton's Laws of Motion -- 1.1.3 Rectilinear Work and Energy -- 1.1.4 Circular Motion -- 1.1.4.1 Uniform Circular Motion of a Particle -- 1.1.5 Rotating Rigid‐Body Kinetics -- 1.1.6 Moment, Couple, and Torque -- 1.1.7 Accelerated and Decelerated Shafts -- 1.1.8 Angular Momentum (Moment of Momentum) -- 1.1.9 Rotational Work, Power, and Kinetic Energy -- 1.2 Fluid Mechanics -- 1.2.1 Fluid Properties -- 1.2.1.1 Mass and Weight -- 1.2.1.2 Pressure -- 1.2.1.3 Compressibility -- 1.2.1.4 Viscosity -- 1.2.2 Fluid Flow -- 1.2.2.1 General Energy Equation -- 1.2.3 Acoustic Velocity (Speed of Sound) -- 1.2.4 Similitude and Dimensional Analysis -- 1.2.4.1 Dimensional Analysis -- 1.2.4.2 Buckingham Pi (π) Theorem -- 1.3 Thermodynamics -- 1.3.1 Work and Heat as Different Forms of Energy -- 1.3.2 Mixture of Gases -- 1.3.2.1 Dalton Model of Gas Mixtures -- 1.3.3 Processes in Ideal Gas Systems -- 1.3.3.1 Adiabatic Processes -- 1.3.3.2 Heat‐Only Process -- 1.3.3.3 Isothermal Process -- 1.3.3.4 Isochoric Process -- 1.3.3.5 Polytropic Process -- 1.3.4 Cycles -- 1.3.5 First Law of Thermodynamics -- 1.3.5.1 Non‐Flow Energy Equation -- 1.3.5.2 Steady‐Flow Energy Equation -- 1.3.5.3 Stagnation Properties -- 1.3.5.4 Isentropic Flow -- 1.3.5.5 Speed Parameter -- 1.3.5.6 Mass Flow Parameter -- 1.3.5.7 Applications of the Energy Equation -- 1.3.6 Second Law of Thermodynamics -- 1.3.6.1 Entropy -- 1.3.7 The Carnot Principle -- 1.3.8 Zeroth Law of Thermodynamics -- 1.3.8.1 Thermodynamic Scale of Temperature -- 1.3.9 Third Law of Thermodynamics -- Problems.

Chapter 2 Thermodynamics of Reactive Mixtures -- 2.1 Fuels -- 2.2 Stoichiometry -- 2.3 Chemical Reactions -- 2.3.1 Fuels Having a Single Chemical Formula -- 2.3.2 Multi‐Component Gaseous Fuels -- 2.3.3 Fuels with Known Mass Concentration of the Constituent Elements -- 2.3.3.1 Air‐Fuel Ratios -- 2.3.3.2 Products of Complete Combustion (λ ≥ 1) -- 2.3.3.3 Products of Incomplete Combustion (λ &lt -- 1) -- 2.4 Thermodynamic Properties of the Combustion Products -- 2.5 First Law Analysis of Reacting Mixtures -- 2.5.1 Non‐Flow Process with Chemical Reactions -- 2.5.2 Steady‐State System with Chemical Reactions -- 2.5.2.1 Enthalpy of Formation -- 2.5.2.2 Enthalpy of Reaction -- 2.6 Adiabatic Flame Temperature -- 2.6.1 Steady‐State Process -- 2.6.2 Constant‐Volume Combustion Process -- 2.7 Entropy Change in Reacting Mixtures -- 2.7.1 Absolute Entropy -- 2.8 Second Law Analysis of Reacting Mixtures -- 2.9 Chemical and Phase Equilibrium -- 2.9.1 Gibbs and Helmholtz Functions and Equilibrium -- 2.9.2 Equilibrium Constant -- 2.9.2.1 Equilibrium Constant of Formation -- 2.9.3 Dissociation and Equilibrium Composition -- 2.10 Multi‐Species Equilibrium Composition of Combustion Products -- 2.10.1 Frozen Composition -- 2.10.2 Equilibrium Composition -- 2.10.2.1 Six Species in the Products -- 2.10.2.2 Eleven Species in the Products -- 2.10.2.3 Eighteen Species in the Products -- Problems -- Part II Reciprocating Internal Combustion Engines -- Introduction II: History and Classification of Reciprocating Internal Combustion Engines -- Chapter 3 Ideal Cycles for Natural‐Induction Reciprocating Engines -- 3.1 Generalised Cycle -- 3.2 Constant‐Volume Cycle (Otto Cycle) -- 3.3 Constant Pressure (Diesel) Cycle -- 3.4 Dual Cycle (Pressure‐Limited Cycle) -- 3.5 Cycle Comparison -- Problems -- Chapter 4 Ideal Cycles for Forced‐Induction Reciprocating Engines.

4.1 Turbocharged Cycles -- 4.1.1 Turbocharged Engine with Constant‐Pressure Turbine -- 4.1.1.1 Thermal Efficiency -- 4.1.1.2 Mean Effective Pressure -- 4.1.2 Turbocharged Engine with Variable‐Pressure Turbine -- 4.1.2.1 Thermal Efficiency -- 4.1.2.2 Mean Effective Pressure -- 4.2 Supercharged Cycles -- 4.2.1 Thermal Efficiency -- 4.2.2 Mean Effective Pressure -- 4.3 Forced Induction Cycles with Intercooling -- 4.3.1 Cycle with Constant‐Pressure Turbine and Intercooling -- 4.3.1.1 Cooling Process -- 4.3.1.2 Thermal Efficiency -- 4.3.1.3 Mean Effective Pressure -- 4.3.2 Cycle with Variable‐Pressure Turbocharging and Intercooling -- 4.3.2.1 Cooling Process -- 4.3.2.2 Thermal Efficiency -- 4.3.2.3 Mean Effective Pressure -- 4.3.3 Cycle with Supercharging and Intercooling -- 4.3.3.1 Cooling Process -- 4.3.3.2 Thermal Efficiency -- 4.3.3.3 Mean Effective Pressure -- 4.4 Comparison of Boosted Cycles -- Problems -- Chapter 5 Fuel‐Air Cycles for Reciprocating Engines -- 5.1 Fuel‐Air Cycle Assumptions -- 5.2 Compression Process -- 5.3 Combustion Process -- 5.3.1 Constant‐Volume Combustion Cycle (Otto Cycle) -- 5.3.2 Constant‐Pressure Cycle (Diesel Cycle) -- 5.4 Expansion Process -- 5.5 Mean Effective Pressure -- 5.6 Cycle Comparison -- Problems -- Chapter 6 Practical Cycles for Reciprocating Engines -- 6.1 Four‐Stroke Engine -- 6.1.1 The Induction Process a − b − c − d − e -- 6.1.2 The Compression Process e − f -- 6.1.3 The Combustion and Expansion Processes f − g − h − i -- 6.1.4 The Exhaust Process i − j − a − b − c -- 6.2 Two‐Stroke Engine -- 6.2.1 Compression Processes 5 − 1 -- 6.2.2 Combustion and Expansion Processes 1 − b − c − 2 -- 6.2.3 Exhaust and Induction Processes 2 − 3 − a − 4 − 5 -- 6.3 Practical Cycles for Four‐Stroke Engines -- 6.3.1 Compression Ignition Engine (CI Engine) -- 6.3.1.1 Induction Process -- 6.3.1.2 Compression Process.

6.3.1.3 Combustion Process -- 6.3.1.4 The Expansion Process -- 6.3.1.5 Cycle Work and Mean Effective Pressure -- 6.3.2 Spark Ignition Engine (SI Engine) -- 6.3.2.1 Combustion Process -- 6.3.2.2 Expansion Process -- 6.3.2.3 Cycle Work and Mean Effective Pressure -- 6.3.3 Constant‐Pressure Combustion Engine -- 6.3.3.1 Combustion Process -- 6.3.3.2 Expansion Process -- 6.3.3.3 Cycle Work and Mean Effective Pressure -- 6.4 Cycle Comparison -- 6.5 Cycles Based on Combustion Modelling (Wiebe Function) -- 6.5.1 The Wiebe Function -- 6.5.2 Cycle Calculation Using Wiebe Function -- 6.6 Example of Wiebe Function Application -- 6.6.1 SI Engine -- 6.6.2 CI Engine -- 6.7 Double Wiebe Models -- 6.7.1 Rapid Combustion Phase -- 6.7.2 Diffusion Phase -- 6.8 Computer‐Aided Engine Simulation -- Problems -- Chapter 7 Work‐Transfer System in Reciprocating Engines -- 7.1 Kinematics of the Piston‐Crank Mechanism -- 7.2 Dynamics of the Reciprocating Mechanism -- 7.2.1 Mass‐Distribution Scheme -- 7.2.1.1 Masses at the Piston Pin -- 7.2.1.2 Masses at the Crank Pin -- 7.2.2 Forces Acting on the Reciprocating Mechanism -- 7.2.2.1 Forces Acting on the Piston Pin -- 7.2.2.2 Forces Acting on the Crank Pin -- 7.2.2.3 Forces and Moments Acting on the Crankshaft Supports at Point O -- 7.2.2.4 Resultant Forces Acting on the Crank Pin -- 7.2.2.5 Polar Diagram -- 7.2.2.6 Resultant Forces Acting on the Crankshaft Bearing Journals -- 7.3 Multi‐Cylinder Engines -- 7.3.1 Torque in Multi‐Cylinder Engines -- 7.3.1.1 Torque Uniformity Factor (TUF) -- 7.3.2 Engine‐Speed Fluctuations -- 7.4 Engine Balancing -- 7.4.1 Single‐Cylinder Engine -- 7.4.2 Multi‐Cylinder Engines -- 7.4.2.1 Two‐Cylinder Inline Engine -- 7.4.2.2 Two‐Cylinder V‐Engine -- 7.4.2.3 Balancing an Eight‐Cylinder V‐Engine -- 7.4.2.4 Other Engine Configurations -- Problems.

Chapter 8 Reciprocating Engine Performance Characteristics -- 8.1 Indicator Diagrams -- 8.2 Indicated Parameters -- 8.2.1 Indicated Work -- 8.2.2 Indicated Power -- 8.2.3 Indicated Specific Fuel Consumption -- 8.2.4 Indicated Efficiency -- 8.2.5 Indicated Mean Effective Pressure -- 8.2.6 Indicated Power -- 8.3 Brake Parameters -- 8.3.1 Brake‐Specific Fuel Consumption -- 8.3.2 Brake Efficiency -- 8.3.3 Brake Mean Effective Pressure -- 8.3.4 Brake Power -- 8.4 Engine Design Point and Performance -- 8.4.1 Design Point Calculations -- 8.4.2 Engine Performance Characteristics -- 8.5 Off‐Design Performance -- 8.5.1 Speed Characteristics -- 8.5.2 Load Characteristics -- 8.5.2.1 SI Engines -- 8.5.2.2 CI Engines -- Problems -- Part III Gas Turbine Internal Combustion Engines -- Introduction III: History and Classification of Gas Turbines -- Chapter 9 Air‐Standard Gas Turbine Cycles -- 9.1 Joule‐Brayton Ideal Cycle -- 9.2 Cycle with Heat Exchange (Regeneration) -- 9.3 Cycle with Reheat -- 9.4 Cycle with Intercooling -- 9.5 Cycle with Heat Exchange and Reheat -- 9.6 Cycle with Heat Exchange and Intercooling -- 9.7 Cycle with Heat Exchange, Reheat, and Intercooling -- 9.8 Cycle Comparison -- Problems -- Chapter 10 Irreversible Air‐Standard Gas Turbine Cycles -- 10.1 Component Efficiencies -- 10.1.1 Compressor Isentropic Efficiency -- 10.1.2 Turbine Isentropic Efficiency -- 10.1.3 Polytropic (Small‐Stage) Compressor Efficiency -- 10.1.4 Polytropic (Small‐Stage) Turbine Efficiency -- 10.2 Simple Irreversible Cycle -- 10.3 Irreversible Cycle with Heat Exchange (Regenerative Irreversible Cycle) -- 10.4 Irreversible Cycle with Reheat -- 10.5 Irreversible Cycle with Intercooling -- 10.6 Irreversible Cycle with Heat Exchange and Reheat -- 10.7 Irreversible Cycle with Heat Exchange and Intercooling -- 10.8 Irreversible Cycle with Heat Exchange, Reheat, and Intercooling.

10.9 Comparison of Irreversible Cycles.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.