ORPP logo
Image from Google Jackets

Computer Aided Design and Manufacturing.

By: Contributor(s): Material type: TextTextSeries: Wiley-ASME Press SeriesPublisher: Newark : John Wiley & Sons, Incorporated, 2020Copyright date: ©2020Edition: 1st edDescription: 1 online resource (642 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119534242
Subject(s): Genre/Form: Additional physical formats: Print version:: Computer Aided Design and ManufacturingDDC classification:
  • 658.5
LOC classification:
  • TS155.6 .B5 2020
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- Series Preface -- Preface -- About the Companion Website -- Chapter 1 Computers in Manufacturing -- 1.1 Introduction -- 1.1.1 Importance of Manufacturing -- 1.1.2 Scale and Complexity of Manufacturing -- 1.1.3 Human Roles in Manufacturing -- 1.1.4 Computers in Advanced Manufacturing -- 1.2 Computer Aided Technologies (CATs) -- 1.3 CATs for Engineering Designs -- 1.3.1 Engineering Design in a Manufacturing System -- 1.3.2 Importance of Engineering Design -- 1.3.3 Types of Design Activities -- 1.3.4 Human Versus Computers -- 1.3.5 Human and Machine Interactions -- 1.4 Architecture of Computer Aided Systems -- 1.4.1 Hardware Components -- 1.4.2 Computer Software Systems -- 1.4.3 Servers, Networking, and Cloud Technologies -- 1.5 Computer Aided Technologies in Manufacturing -- 1.6 Limitation of the Existing Manufacturing Engineering Curriculum -- 1.7 Course Framework for Digital Manufacturing -- 1.8 Design of the CAD/CAM Course -- 1.8.1 Existing Design of the CAD/CAM Course -- 1.8.2 Customization of the CAD/CAM Course -- 1.9 Summary -- 1.10 Review Questions -- References -- Part I Computer Aided Design (CAD) -- Chapter 2 Computer Aided Geometric Modelling -- 2.1 Introduction -- 2.2 Basic Elements in Geometry -- 2.2.1 Coordinate Systems -- 2.2.2 Reference Points, Lines, and Planes -- 2.2.3 Coordinate Transformation of Points -- 2.2.4 Coordinate Transformation of Objects -- 2.3 Representation of Shapes -- 2.3.1 Basic Data Structure -- 2.3.2 Curvy Geometric Elements -- 2.3.3 Euler-Poincare Law for Solids -- 2.4 Basic Modelling Methods -- 2.4.1 Wireframe Modelling -- 2.4.2 Surface Modelling -- 2.4.3 Boundary Surface Modelling (B‐Rep) -- 2.4.4 Space Decomposition -- 2.4.5 Solid Modelling -- 2.4.5.1 Solid Primitives -- 2.4.5.2 Composition Operations -- 2.4.5.3 CSG Modelling -- 2.4.5.4 Modelling Procedure.
2.4.5.5 Data Structure of CSG Models -- 2.5 Feature‐Based Modelling with Design Intents -- 2.6 Interactive Feature‐Based Modelling Using CAD Tools -- 2.7 Summary -- 2.8 Modelling Problems -- References -- Chapter 3 Knowledge‐Based Engineering -- 3.1 Generative Model in Engineering Design -- 3.2 Knowledge‐Based Engineering -- 3.3 Parametric Modelling -- 3.3.1 Define Basic Geometric Elements -- 3.3.1.1 Parametrized Points -- 3.3.1.2 Parametrized Lines -- 3.3.1.3 Parametrized Surfaces -- 3.3.1.4 Parametrized Curves -- 3.3.1.5 Parametrized Surfaces -- 3.3.2 Types of Parameters -- 3.3.3 Geometric Constraints and Relations -- 3.3.3.1 Dimensional Parameters -- 3.3.3.2 Geometric Constraints -- 3.4 Design Intents -- 3.4.1 Default Location and Orientation of a Part -- 3.4.2 First Sketch Plane -- 3.5 Design Equations -- 3.6 Design Tables -- 3.7 Configurations as Part Properties -- 3.8 Design Tables in Assembly Models -- 3.9 Design Tables in Applications -- 3.10 Design Templates -- 3.11 Summary -- 3.12 Design Problems -- References -- Chapter 4 Platform Technologies -- 4.1 Concurrent Engineering (CE) -- 4.1.1 Brief History -- 4.1.2 Needs of CE -- 4.1.3 Challenges of CE Practice -- 4.1.4 Concurrent Engineering (CE) and Continuous Improvement (CI) -- 4.2 Platform Technologies -- 4.3 Modularization -- 4.4 Product Platforms -- 4.5 Product Variants and Platform Technologies -- 4.6 Fundamentals to Platform Technologies -- 4.7 Design Procedure of Product Platforms -- 4.8 Modularization of Products -- 4.8.1 Classification of Functional Requirements (FRs) -- 4.8.2 Module‐Based Product Platforms -- 4.8.3 Scale‐Based Product Family -- 4.8.4 Top‐Down and Bottom‐Up Approaches -- 4.9 Platform Leveraging in CI -- 4.10 Evaluation of Product Platforms -- 4.10.1 Step 1. Representation of a Modularized Platform.
4.10.2 Step 2. Mapping a Modular Architecture for Robot Configurations -- 4.10.3 Step 3. Determine Evaluation Criteria of a Product Platform -- 4.10.4 Step 4. Evaluate Platform Solutions -- 4.11 Computer Aided Tools (CAD) for Platform Technologies -- 4.11.1 Modelling Techniques of Product Variants -- 4.11.2 Design Toolboxes -- 4.11.3 Custom Design Libraries -- 4.12 Summary -- 4.13 Design Projects -- References -- Chapter 5 Computer Aided Reverse Engineering -- 5.1 Introduction -- 5.2 RE as Design Methodology -- 5.3 RE Procedure -- 5.4 Digital Modelling -- 5.4.1 Types of Digital Models -- 5.4.2 Surface Reconstruction -- 5.4.3 Algorithms for Surface Reconstruction -- 5.4.4 Limitations of Existing Algorithms -- 5.4.5 Data Flow in Surface Reconstruction -- 5.4.6 Surface Reconstruction Algorithm -- 5.4.7 Implementation Examples -- 5.5 Hardware Systems for Data Acquisition -- 5.5.1 Classification of Hardware Systems -- 5.5.2 Positioning of Data Acquisition Devices -- 5.5.3 Control of Scanning Processes -- 5.5.4 Available Hardware Systems -- 5.6 Software Systems for Data Processing -- 5.6.1 Data Filtering -- 5.6.2 Data Registration and Integration -- 5.6.3 Feature Detection -- 5.6.4 Surface Reconstruction -- 5.6.5 Surface Simplification -- 5.6.6 Segmentation -- 5.6.7 Available Software Tools -- 5.7 Typical Manufacturing Applications -- 5.8 Computer Aided Reverse Engineering (CARE) -- 5.8.1 Recap to Convert Sensed Data into Polygonal Models -- 5.8.2 ScanTo3D for Generation of Parametric Models -- 5.8.3 RE of Assembled Products -- 5.9 RE - Trend of Development -- 5.10 Summary -- 5.11 Design Project -- References -- Chapter 6 Computer Aided Machine Design -- 6.1 Introduction -- 6.2 General Functional Requirements (FRs) of Machines -- 6.3 Fundamentals of Machine Design -- 6.3.1 Link Types -- 6.3.2 Joint Types and Degrees of Freedom (DoFs).
6.3.3 Kinematic Chains -- 6.3.4 Mobility of Mechanical Systems -- 6.4 Kinematic Synthesis -- 6.4.1 Type Synthesis -- 6.4.2 Number Synthesis -- 6.4.3 Dimensional Synthesis -- 6.5 Kinematics -- 6.5.1 Positions of Particles, Links, and Bodies in 2D and 3D Space -- 6.5.2 Motions of Particles, Links, and Bodies -- 6.5.3 Vector‐Loop Method for Motion Analysis of a Plane Mechanism -- 6.5.3.1 Kinematic Parameters and Variables -- 6.5.3.2 Inverse Kinematics -- 6.5.3.3 Direct Kinematics -- 6.5.4 Kinematic Modelling Based on Denavit-Hartenberg (D‐H) Parameters -- 6.5.5 Jacobian Matrix for Velocity Relations -- 6.6 Dynamic Modelling -- 6.6.1 Inertia and Moments of Inertia -- 6.6.2 Newton-Euler Formulation -- 6.6.2.1 Inertia Force/Moment -- 6.6.2.2 Force Equilibrium Equations -- 6.6.2.3 Dynamic Model and Solution -- 6.6.3 Lagrangian Method -- 6.7 Kinematic and Dynamics Modelling in Virtual Design -- 6.7.1 Motion Simulation -- 6.7.2 Model Preparation -- 6.7.3 Creation of a Simulation Model -- 6.7.4 Define Motion Variables -- 6.7.5 Setting Simulation Parameters -- 6.7.6 Run Simulation and Visualize Motion -- 6.7.7 Analyse Simulation Data -- 6.7.8 Structural Simulation Using Motion Loads -- 6.8 Summary -- 6.9 Design Project -- References -- Part II Computer Aided Manufacturing (CAM) -- Chapter 7 Group Technology and Cellular Manufacturing -- 7.1 Introduction -- 7.2 Manufacturing System and Components -- 7.2.1 Machine Tools -- 7.2.2 Material Handling Tools -- 7.2.3 Fixtures -- 7.2.4 Assembling Systems and Others -- 7.3 Layouts of Manufacturing Systems -- 7.3.1 Job Shops -- 7.3.2 Flow Shops -- 7.3.3 Project Shops -- 7.3.4 Continuous Production -- 7.3.5 Cellular Manufacturing -- 7.3.6 Flexible Manufacturing System (FMS) -- 7.3.7 Distributed Manufacturing and Virtual Manufacturing -- 7.3.8 Hardware Reconfiguration Versus System Layout -- 7.4 Group Technology (GT).
7.4.1 Visual Inspection -- 7.4.2 Product Classification and Coding -- 7.4.2.1 Monocodes -- 7.4.2.2 Polycodes -- 7.4.2.3 Hybrid Codes -- 7.4.2.4 Opitz Coding System -- 7.4.3 Production Flow Analysis -- 7.5 Cellular Manufacturing -- 7.6 Summary -- 7.7 Design Problems -- References -- Chapter 8 Computer Aided Fixture Design -- 8.1 Introduction -- 8.2 Fixtures in Processes of Discrete Manufacturing -- 8.3 Fixtures and Jigs -- 8.4 Functional Requirements (FRs) of Fixtures -- 8.5 Fundamentals of Fixture Design -- 8.5.1 3‐2‐1 Principle -- 8.5.2 Axioms for Geometric Control -- 8.5.3 Axioms for Dimensional Control -- 8.5.4 Axioms for Mechanical Control -- 8.5.5 Fixturing Cylindrical Workpiece -- 8.5.6 Kinematic and Dynamic Analysis -- 8.6 Types and Elements of Fixture Systems -- 8.6.1 Supports -- 8.6.2 Types of Fixture Systems -- 8.6.3 Locators -- 8.6.4 Clamps -- 8.6.5 Flexible Fixtures -- 8.6.5.1 Adjustable Fixtures -- 8.6.5.2 Modular Fixtures -- 8.6.5.3 Phase‐Change Work‐Holding -- 8.6.5.4 Conformable Fixtures -- 8.6.5.5 Fixtureless Operations -- 8.7 Procedure of Fixture Design -- 8.8 Computer Aided Fixture Design -- 8.8.1 Fixture Design Library -- 8.8.2 Interference Detection -- 8.8.3 Accessibility Analysis -- 8.8.4 Analysis of Deformation and Accuracy -- 8.9 Summary -- 8.10 Design Projects -- References -- Chapter 9 Computer Aided Manufacturing (CAM) -- 9.1 Introduction -- 9.1.1 Human and Machines in Manufacturing -- 9.1.2 Automation in Manufacturing -- 9.1.2.1 Hard Automation -- 9.1.2.2 Programmable Automation -- 9.1.2.3 Full Automation -- 9.1.3 Automated Decision‐Making Supports -- 9.1.4 Automation in Manufacturing Execution Systems (MESs) -- 9.2 Computer Aided Manufacturing (CAM) -- 9.2.1 Numerically Controlled (NC) Machine Tools -- 9.2.2 Industrial Robots -- 9.2.3 Automated Storage and Retrieval Systems (ASRS) -- 9.2.4 Flexible Fixture Systems (FFSs).
9.2.5 Coordinate Measurement Machines (CMMs).
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- Series Preface -- Preface -- About the Companion Website -- Chapter 1 Computers in Manufacturing -- 1.1 Introduction -- 1.1.1 Importance of Manufacturing -- 1.1.2 Scale and Complexity of Manufacturing -- 1.1.3 Human Roles in Manufacturing -- 1.1.4 Computers in Advanced Manufacturing -- 1.2 Computer Aided Technologies (CATs) -- 1.3 CATs for Engineering Designs -- 1.3.1 Engineering Design in a Manufacturing System -- 1.3.2 Importance of Engineering Design -- 1.3.3 Types of Design Activities -- 1.3.4 Human Versus Computers -- 1.3.5 Human and Machine Interactions -- 1.4 Architecture of Computer Aided Systems -- 1.4.1 Hardware Components -- 1.4.2 Computer Software Systems -- 1.4.3 Servers, Networking, and Cloud Technologies -- 1.5 Computer Aided Technologies in Manufacturing -- 1.6 Limitation of the Existing Manufacturing Engineering Curriculum -- 1.7 Course Framework for Digital Manufacturing -- 1.8 Design of the CAD/CAM Course -- 1.8.1 Existing Design of the CAD/CAM Course -- 1.8.2 Customization of the CAD/CAM Course -- 1.9 Summary -- 1.10 Review Questions -- References -- Part I Computer Aided Design (CAD) -- Chapter 2 Computer Aided Geometric Modelling -- 2.1 Introduction -- 2.2 Basic Elements in Geometry -- 2.2.1 Coordinate Systems -- 2.2.2 Reference Points, Lines, and Planes -- 2.2.3 Coordinate Transformation of Points -- 2.2.4 Coordinate Transformation of Objects -- 2.3 Representation of Shapes -- 2.3.1 Basic Data Structure -- 2.3.2 Curvy Geometric Elements -- 2.3.3 Euler-Poincare Law for Solids -- 2.4 Basic Modelling Methods -- 2.4.1 Wireframe Modelling -- 2.4.2 Surface Modelling -- 2.4.3 Boundary Surface Modelling (B‐Rep) -- 2.4.4 Space Decomposition -- 2.4.5 Solid Modelling -- 2.4.5.1 Solid Primitives -- 2.4.5.2 Composition Operations -- 2.4.5.3 CSG Modelling -- 2.4.5.4 Modelling Procedure.

2.4.5.5 Data Structure of CSG Models -- 2.5 Feature‐Based Modelling with Design Intents -- 2.6 Interactive Feature‐Based Modelling Using CAD Tools -- 2.7 Summary -- 2.8 Modelling Problems -- References -- Chapter 3 Knowledge‐Based Engineering -- 3.1 Generative Model in Engineering Design -- 3.2 Knowledge‐Based Engineering -- 3.3 Parametric Modelling -- 3.3.1 Define Basic Geometric Elements -- 3.3.1.1 Parametrized Points -- 3.3.1.2 Parametrized Lines -- 3.3.1.3 Parametrized Surfaces -- 3.3.1.4 Parametrized Curves -- 3.3.1.5 Parametrized Surfaces -- 3.3.2 Types of Parameters -- 3.3.3 Geometric Constraints and Relations -- 3.3.3.1 Dimensional Parameters -- 3.3.3.2 Geometric Constraints -- 3.4 Design Intents -- 3.4.1 Default Location and Orientation of a Part -- 3.4.2 First Sketch Plane -- 3.5 Design Equations -- 3.6 Design Tables -- 3.7 Configurations as Part Properties -- 3.8 Design Tables in Assembly Models -- 3.9 Design Tables in Applications -- 3.10 Design Templates -- 3.11 Summary -- 3.12 Design Problems -- References -- Chapter 4 Platform Technologies -- 4.1 Concurrent Engineering (CE) -- 4.1.1 Brief History -- 4.1.2 Needs of CE -- 4.1.3 Challenges of CE Practice -- 4.1.4 Concurrent Engineering (CE) and Continuous Improvement (CI) -- 4.2 Platform Technologies -- 4.3 Modularization -- 4.4 Product Platforms -- 4.5 Product Variants and Platform Technologies -- 4.6 Fundamentals to Platform Technologies -- 4.7 Design Procedure of Product Platforms -- 4.8 Modularization of Products -- 4.8.1 Classification of Functional Requirements (FRs) -- 4.8.2 Module‐Based Product Platforms -- 4.8.3 Scale‐Based Product Family -- 4.8.4 Top‐Down and Bottom‐Up Approaches -- 4.9 Platform Leveraging in CI -- 4.10 Evaluation of Product Platforms -- 4.10.1 Step 1. Representation of a Modularized Platform.

4.10.2 Step 2. Mapping a Modular Architecture for Robot Configurations -- 4.10.3 Step 3. Determine Evaluation Criteria of a Product Platform -- 4.10.4 Step 4. Evaluate Platform Solutions -- 4.11 Computer Aided Tools (CAD) for Platform Technologies -- 4.11.1 Modelling Techniques of Product Variants -- 4.11.2 Design Toolboxes -- 4.11.3 Custom Design Libraries -- 4.12 Summary -- 4.13 Design Projects -- References -- Chapter 5 Computer Aided Reverse Engineering -- 5.1 Introduction -- 5.2 RE as Design Methodology -- 5.3 RE Procedure -- 5.4 Digital Modelling -- 5.4.1 Types of Digital Models -- 5.4.2 Surface Reconstruction -- 5.4.3 Algorithms for Surface Reconstruction -- 5.4.4 Limitations of Existing Algorithms -- 5.4.5 Data Flow in Surface Reconstruction -- 5.4.6 Surface Reconstruction Algorithm -- 5.4.7 Implementation Examples -- 5.5 Hardware Systems for Data Acquisition -- 5.5.1 Classification of Hardware Systems -- 5.5.2 Positioning of Data Acquisition Devices -- 5.5.3 Control of Scanning Processes -- 5.5.4 Available Hardware Systems -- 5.6 Software Systems for Data Processing -- 5.6.1 Data Filtering -- 5.6.2 Data Registration and Integration -- 5.6.3 Feature Detection -- 5.6.4 Surface Reconstruction -- 5.6.5 Surface Simplification -- 5.6.6 Segmentation -- 5.6.7 Available Software Tools -- 5.7 Typical Manufacturing Applications -- 5.8 Computer Aided Reverse Engineering (CARE) -- 5.8.1 Recap to Convert Sensed Data into Polygonal Models -- 5.8.2 ScanTo3D for Generation of Parametric Models -- 5.8.3 RE of Assembled Products -- 5.9 RE - Trend of Development -- 5.10 Summary -- 5.11 Design Project -- References -- Chapter 6 Computer Aided Machine Design -- 6.1 Introduction -- 6.2 General Functional Requirements (FRs) of Machines -- 6.3 Fundamentals of Machine Design -- 6.3.1 Link Types -- 6.3.2 Joint Types and Degrees of Freedom (DoFs).

6.3.3 Kinematic Chains -- 6.3.4 Mobility of Mechanical Systems -- 6.4 Kinematic Synthesis -- 6.4.1 Type Synthesis -- 6.4.2 Number Synthesis -- 6.4.3 Dimensional Synthesis -- 6.5 Kinematics -- 6.5.1 Positions of Particles, Links, and Bodies in 2D and 3D Space -- 6.5.2 Motions of Particles, Links, and Bodies -- 6.5.3 Vector‐Loop Method for Motion Analysis of a Plane Mechanism -- 6.5.3.1 Kinematic Parameters and Variables -- 6.5.3.2 Inverse Kinematics -- 6.5.3.3 Direct Kinematics -- 6.5.4 Kinematic Modelling Based on Denavit-Hartenberg (D‐H) Parameters -- 6.5.5 Jacobian Matrix for Velocity Relations -- 6.6 Dynamic Modelling -- 6.6.1 Inertia and Moments of Inertia -- 6.6.2 Newton-Euler Formulation -- 6.6.2.1 Inertia Force/Moment -- 6.6.2.2 Force Equilibrium Equations -- 6.6.2.3 Dynamic Model and Solution -- 6.6.3 Lagrangian Method -- 6.7 Kinematic and Dynamics Modelling in Virtual Design -- 6.7.1 Motion Simulation -- 6.7.2 Model Preparation -- 6.7.3 Creation of a Simulation Model -- 6.7.4 Define Motion Variables -- 6.7.5 Setting Simulation Parameters -- 6.7.6 Run Simulation and Visualize Motion -- 6.7.7 Analyse Simulation Data -- 6.7.8 Structural Simulation Using Motion Loads -- 6.8 Summary -- 6.9 Design Project -- References -- Part II Computer Aided Manufacturing (CAM) -- Chapter 7 Group Technology and Cellular Manufacturing -- 7.1 Introduction -- 7.2 Manufacturing System and Components -- 7.2.1 Machine Tools -- 7.2.2 Material Handling Tools -- 7.2.3 Fixtures -- 7.2.4 Assembling Systems and Others -- 7.3 Layouts of Manufacturing Systems -- 7.3.1 Job Shops -- 7.3.2 Flow Shops -- 7.3.3 Project Shops -- 7.3.4 Continuous Production -- 7.3.5 Cellular Manufacturing -- 7.3.6 Flexible Manufacturing System (FMS) -- 7.3.7 Distributed Manufacturing and Virtual Manufacturing -- 7.3.8 Hardware Reconfiguration Versus System Layout -- 7.4 Group Technology (GT).

7.4.1 Visual Inspection -- 7.4.2 Product Classification and Coding -- 7.4.2.1 Monocodes -- 7.4.2.2 Polycodes -- 7.4.2.3 Hybrid Codes -- 7.4.2.4 Opitz Coding System -- 7.4.3 Production Flow Analysis -- 7.5 Cellular Manufacturing -- 7.6 Summary -- 7.7 Design Problems -- References -- Chapter 8 Computer Aided Fixture Design -- 8.1 Introduction -- 8.2 Fixtures in Processes of Discrete Manufacturing -- 8.3 Fixtures and Jigs -- 8.4 Functional Requirements (FRs) of Fixtures -- 8.5 Fundamentals of Fixture Design -- 8.5.1 3‐2‐1 Principle -- 8.5.2 Axioms for Geometric Control -- 8.5.3 Axioms for Dimensional Control -- 8.5.4 Axioms for Mechanical Control -- 8.5.5 Fixturing Cylindrical Workpiece -- 8.5.6 Kinematic and Dynamic Analysis -- 8.6 Types and Elements of Fixture Systems -- 8.6.1 Supports -- 8.6.2 Types of Fixture Systems -- 8.6.3 Locators -- 8.6.4 Clamps -- 8.6.5 Flexible Fixtures -- 8.6.5.1 Adjustable Fixtures -- 8.6.5.2 Modular Fixtures -- 8.6.5.3 Phase‐Change Work‐Holding -- 8.6.5.4 Conformable Fixtures -- 8.6.5.5 Fixtureless Operations -- 8.7 Procedure of Fixture Design -- 8.8 Computer Aided Fixture Design -- 8.8.1 Fixture Design Library -- 8.8.2 Interference Detection -- 8.8.3 Accessibility Analysis -- 8.8.4 Analysis of Deformation and Accuracy -- 8.9 Summary -- 8.10 Design Projects -- References -- Chapter 9 Computer Aided Manufacturing (CAM) -- 9.1 Introduction -- 9.1.1 Human and Machines in Manufacturing -- 9.1.2 Automation in Manufacturing -- 9.1.2.1 Hard Automation -- 9.1.2.2 Programmable Automation -- 9.1.2.3 Full Automation -- 9.1.3 Automated Decision‐Making Supports -- 9.1.4 Automation in Manufacturing Execution Systems (MESs) -- 9.2 Computer Aided Manufacturing (CAM) -- 9.2.1 Numerically Controlled (NC) Machine Tools -- 9.2.2 Industrial Robots -- 9.2.3 Automated Storage and Retrieval Systems (ASRS) -- 9.2.4 Flexible Fixture Systems (FFSs).

9.2.5 Coordinate Measurement Machines (CMMs).

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.