ORPP logo
Image from Google Jackets

Insect Development and Evolution.

By: Material type: TextTextPublisher: Ithaca : Cornell University Press, 2003Copyright date: ©2003Edition: 1st edDescription: 1 online resource (464 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781501720758
Subject(s): Genre/Form: Additional physical formats: Print version:: Insect Development and EvolutionDDC classification:
  • 571.8/157
LOC classification:
  • QL496 .H465 2003
Online resources:
Contents:
Cover -- Insect Development and Evolution -- Title -- Copyright -- Dedication -- Contents -- Preface -- Acknowledgments -- Introduction -- Development and Biology -- Reductionist versus Evolutionary Approaches to the Study of Insect Development -- Insect Ontogeny: A Summary -- A Note on Phylogeny -- Chapter 1. The Male Reproductive System and Spermatogenesis -- 1.1 Male Reproductive Systems -- 1.1.1 Testis -- 1.1.2 Primary Exit System -- 1.1.3 Secondary Exit System -- 1.1.4 External Genitalia -- 1.2 Insect Spermatozoa -- 1.2.1 Structure -- 1.2.2 Motility -- 1.2.3 Phylogenetic Aspects -- 1.3 Spermatogenesis -- 1.3.1 Primordial Development -- 1.3.2 Premeiotic Events -- 1.3.3 Meiosis -- 1.3.4 Spermiogenesis -- 1.3.5 Rate of Spermatogenesis -- 1.3.6 Productivity of Spermatogenesis -- 1.3.7 Control of Spermatogenesis -- Chapter 2. The Female Reproductive System and Oogenesis -- 2.1 Female Reproductive Systems -- 2.1.1 Ovaries -- 2.1.2 Primary Exit System -- 2.1.3 Secondary Exit System -- 2.1.4 External Genitalia -- 2.2 Oogenesis -- 2.2.1 Panoistic Ovarioles -- 2.2.2 Meroistic Ovarioles -- 2.2.3 Staging Oogenesis -- 2.2.4 Duration of Oogenesis -- 2.2.5 Fecundity -- 2.2.6 The Adaptive Significance of Conspecific Differences in Egg Size -- 2.2. 7 Phylogenetic Aspects -- 2.3 Endocrine Control of Oogenesis -- 2.3.1 Previtellogenesis -- 2.3.2 Vitellogenesis -- 2.3.3 Choriogenesis -- 2.4 Influence of Extrinsic Factors on Vitellogenesis -- 2.5 Genes and Oogenesis -- Chapter 3. Sperm Transfer. Allocation. and Use -- 3.1 Sperm Passage from Sperm Tubes into Seminal Vesicles and Spermatophore -- 3.2 Sperm Activation -- 3.3 Intromission and Insemination -- 3.3.1 Marine Arthropods -- 3.3.2 Terrestrial Arthropods -- 3.4 Ovulation -- 3.5 Passage of Sperm from Spermatheca to Micropyle of Egg -- 3.6 Fertilization -- 3.6.1 Molecular Aspects.
3.6.2 Contributions of the Sperm to Successful Fertilization -- 3.7 Sperm Competition and Sexual Selection -- 3.7.1 Influence of Bacterial Parasites on Fertilization and Sperm Competition -- 3.7.2 Copulatory Inhibitors in Drosophila melanogaster -- 3.8 Copulatory Courtship -- 3.9 Oviposition -- 3.9.1 Ovipositor Function -- 3.9.2 Adaptive Significance of the Ovipositor -- 3.10 Viviparity -- Chapter 4. Sex Determination -- 4.1 Sex Chromosomes -- 4.1.1 Evolution -- 4.1.2 Discovery -- 4.2 Sex Determination in Drosophila melanogaster -- 4.2.1 Somatic Sex Determination -- 4.2.2 Sex Determination of Germ Cells -- 4.3 Sex Determination in Haplodiploid (Arrhenotokous) Insects -- 4.4 Chromosome Elimination and Sex Determination in Symphypleon Collembola -- 4.5 Environmental Effects on Sex Determination -- 4.5.1 Temperature -- 4.5.2 Nutrition and Inhibitory Pheromones -- 4.5.3 Androgenic Hormones -- 4.5.4 Maternal Hemolymph -- 4.6 Hermaphrodites -- 4.7 Gynandromorphs -- 4.8 Intersexes -- 4.9 Parasite Effects on Sex Determination -- 4.10 Why Are There Only Two Sexes? -- Chapter 5. Parthenogenesis -- 5.1 Arrhenotoky -- 5.2 Thelytoky -- 5.2.1 Automictic -- 5.2.2 Apomictic -- 5.3 Amphitoky -- 5.4 Evolutionary Considerations -- 5.4.1 Arrhenotoky -- 5.4.2 Thelytoky -- 5.5 Cyclical Parthenogenesis -- 5.5.1 Gall Wasps -- 5.5.2 Aphids -- 5.5.3 Gall Midges -- 5.5.4 Micromalthus debilis -- 5.6 Microorganisms and Parthenogenesis -- Chapter 6. Early Embryogenesis -- 6.1 Egg Structure -- 6.2 Cleavage -- 6.2.1 Control of Cleavage Rate -- 6.2.2 Movement of Cleavage Energids to the Periphery -- 6.2.3 Chromosome Elimination in Embryos of Lower Diptera -- 6.2.4 Vitellophages -- 6.3 Blastoderm Formation -- 6.4 DNA, RNA, and Protein Synthesis during Cleavage and Blastoderm Formation -- 6.5 Mitotic Domains in the Blastoderm of Flies -- 6.6 Pole Cell Formation.
6.6.1 Genes and Pole Cell Formation in Drosophila melanogaster Embryos -- 6.6.2 Substitutive Embryogeny and the Origin of Germ Cells in Orthopteroid Embryos -- 6.6.3 Germ Cell Origin in Polyembryonic Insects -- 6.7 Germ Band Formation -- 6.7.1 Factors Affecting Orientation of the Germ Band in Pentatomid (Heteroptera) Eggs -- 6.7.2 Polyembryony -- 6.8 Gastrulation and Germ Layer Formation -- 6.8.1 Genes and Gastrulation in Drosophila melanogaster Embryos -- 6.9 Blastokinesis and Embryonic Envelopes -- 6.9.1 Anatrepsis -- 6.9.2 Katatrepsis -- 6.9.3 Blastodermal and Serosal Cuticles -- 6.9.4 Blastokinesis in Long Germ Embryos and Specification of the Amnioserosa -- 6.9.5 Yolk Extrusion and Consumption in Long Germ Embryos of the Tephritid Fly Anastrepha fraterculus -- 6.10 Segmentation and Appendage Formation -- 6.10.1 Short Germ Embryos -- 6.10.2 Long Germ Embryos -- Chapter 7. Specification of the Body Plan in Insect Embryos -- 7.1 Early Experiments -- 7.1.1 Determinants and Mosaic Development -- 7.1.2 Physiological Centers -- 7.1.3 Gradients and Pattern Formation -- 7.1.4 Fate Maps -- 7.1.5 Developmental Genetics -- 7.1.6 The Compartment Hypothesis -- 7.2 Molecular Genetics of Pattern Formation in Drosophila melanogaster Embryos -- 7.2.1 Pattern-Control Genes -- 7.2.2 Evolutionary Considerations -- Chapter 8. Organogenesis -- 8.1 Mesoderm -- 8.1.1 Genes and Mesodermal Fate in Drosophila Embryos -- 8.1.2 Muscle Pioneers and Muscle Formation -- 8.1.3 Hemocytes -- 8.1.4 Body Cavity (Hemocoel) -- 8.1.5 Dorsal Vessel -- 8.1.6 Fat Body -- 8.1.7 Subesophageal Body -- 8.2 Endoderm and Ectoderm -- 8.2.1 Midgut -- 8.2.2 Foregut and Hindgut -- 8.2.3 Malpighian Tubules -- 8.3 Ectoderm -- 8.3.1 Central Nervous System -- 8.3.2 Peripheral Nervous System -- 8.3.3 Stomatogastric (Enteric) Nervous System -- 8.3.4 Tracheal System -- 8.3.5 Salivary Glands.
8.3.6 Epidermis and Imaginal Discs -- 8.3.7 Head Involution in Embryos of Higher Flies -- 8.3.8 Embryogenesis of Piercing and Sucking Mouthparts -- 8.3.9 Skeletal Apodemes -- 8.4 Primordia of Mixed Germ Layer Origin -- 8.4.1 Reproductive System -- 8.5 Other Tissues -- 8.6 Miscellaneous Events -- 8.6.1 The Role of Apoptosis in Insect Embryogenesis -- 8.6.2 Induction -- 8.6.3 Hormones and Embryogenesis -- 8.6.4 Environmental Factors -- 8.7 Overview -- 8.8 Computer Simulation of Gene Expression during Embryogenesis of Drosophila melanogaster -- Chapter 9. Postembryonic Development and Life History -- 9.1 Life History Theory -- 9.2 Hatching -- 9.3 Stage and Instar -- 9.4 Metamorphosis -- 9.4.1 Ametabola -- 9.4.2 Hemimetabola (sensu latu) (Exopterygota) -- 9.4.3 Holometabola -- 9.4.4 Recent Concepts -- 9.5 The Concept of Stase -- 9.6 Larvae and Pupae in Holometabola -- 9.6.1 Larvae -- 9.6.2 Pupae -- 9.7 Growth -- 9.7.1 Patterns of Growth -- 9.7.2 Growth and Molting -- 9.7.3 Effects of Sclerotization -- 9.7.4 Why Don't Caterpillars Grow Short and Fat? -- 9.7.5 Disproportionate (Allometric) Growth -- 9.7.6 Diet and Developmental Polymorphism -- 9.7.7 Fluctuating and Directional Asymmetry -- 9.7.8 Number of Molts -- Chapter 10. Molting and Metamorphosis -- 10.1 Molting -- 10.1.1 Sensory Continuity during a Molt -- 10.1.2 Muscular Continuity during a Molt -- 10.2 Structural Change during Metamorphosis -- 10.2.1 Metamorphosis in Higher Flies -- 10.2.2 Mesodermal Structures -- 10.2.3 Structures of Mixed Germ Layer Origin -- 10.2.4 Ectodermal Structures -- Chapter 11. Specification of the Adult Body Pattern -- 11.1 Wound Healing -- 11.2 Regeneration -- 11.2.1 The Role of Morphogens in Regeneration -- 11.2.2 The Polar Coordinate Hypothesis -- 11.2.3 The Reaction-Diffusion Hypothesis -- 11.2.4 The Cartesian Coordinate Hypothesis.
11.3 Genetic and Molecular Basis of Leg and Wing Formation -- 11.3.1 Antigenic Differences around the Circumference and between the Base and Apex of Leg Segments -- 11.3.2 Genetic Specification of Circumferential and Radial (Proximodistal) Axes in Leg and Wing Discs -- 11.4 Genetic Specification of Other External Imaginal Primordia during Development of Drosophila melanogaster -- 11.4.1 Antennal versus Leg Development -- 11.4.2 Antennae, Tarsi, Maxillary Palpus, and Proboscis -- 11.4.3 Abdominal Terga, Sterna, and Pleura -- 11.4.4 The Genital Disc -- 11.5 Effects of Symbiotic Microorganisms -- Chapter 12. Hormones, Molting, and Metamorphosis -- 12.1 Classic Experiments Revealing How Hormones Induce Molting -- 12.2 Classic Experiments Revealing How Hormones Induce Metamorphosis -- 12.3 Neurosecretory Cells and Endocrine Organs -- 12.4 The Developmental Hormones -- 12.4.1 20-OH Ecdysone -- 12.4.2 Prothoracicotropic Hormone -- 12.4.3 Other Ecdysiotropins -- 12.4.4 Allatotropin -- 12.4.5 Juvenile Hormones -- 12.4.6 Allatostatins -- 12.4.7 Precocenes as Antiallatotropins -- 12.4.8 Eclosion Hormone -- 12.4.9 Manduca sexta Pre-ecdysis- and Ecdysis-Triggering Hormones -- 12.4.10 Bursicon -- 12.4.11 Diapause Hormone -- 12.5 The Interaction of Hormones during Molting and Metamorphosis -- 12.6 The Role of Critical Size in Molting and Metamorphosis -- 12.6.1 Molting -- 12.6.2 Size, Growth, and Differentiation of Wing Imaginal Discs in Lepidopterans -- 12.6.3 Metamorphosis -- 12.7 Endocrine Control of Molting and Metamorphosis in Other Arthropods -- 12.8 Hormones, Polymorphism, and Polyphenism -- 12.8.1 Polyphenism in Nonsocial Insects -- 12.8.2 Polymorphism in Eusocial Insects -- 12.9 Future Developments -- Chapter 13. Ontogeny and Hexapod Evolution -- 13.1 The Origin of Taxonomic Units or Taxa -- 13.1.1 The Role of Variation and Natural Selection.
13.1.2 Speciation.
Summary: Life scientists are increasingly drawn to the study of comparative evolutionary biology. Insect Development and Evolution is the first synthesis of knowledge of insect development within an evolutionary framework and the first to survey the genetic.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Insect Development and Evolution -- Title -- Copyright -- Dedication -- Contents -- Preface -- Acknowledgments -- Introduction -- Development and Biology -- Reductionist versus Evolutionary Approaches to the Study of Insect Development -- Insect Ontogeny: A Summary -- A Note on Phylogeny -- Chapter 1. The Male Reproductive System and Spermatogenesis -- 1.1 Male Reproductive Systems -- 1.1.1 Testis -- 1.1.2 Primary Exit System -- 1.1.3 Secondary Exit System -- 1.1.4 External Genitalia -- 1.2 Insect Spermatozoa -- 1.2.1 Structure -- 1.2.2 Motility -- 1.2.3 Phylogenetic Aspects -- 1.3 Spermatogenesis -- 1.3.1 Primordial Development -- 1.3.2 Premeiotic Events -- 1.3.3 Meiosis -- 1.3.4 Spermiogenesis -- 1.3.5 Rate of Spermatogenesis -- 1.3.6 Productivity of Spermatogenesis -- 1.3.7 Control of Spermatogenesis -- Chapter 2. The Female Reproductive System and Oogenesis -- 2.1 Female Reproductive Systems -- 2.1.1 Ovaries -- 2.1.2 Primary Exit System -- 2.1.3 Secondary Exit System -- 2.1.4 External Genitalia -- 2.2 Oogenesis -- 2.2.1 Panoistic Ovarioles -- 2.2.2 Meroistic Ovarioles -- 2.2.3 Staging Oogenesis -- 2.2.4 Duration of Oogenesis -- 2.2.5 Fecundity -- 2.2.6 The Adaptive Significance of Conspecific Differences in Egg Size -- 2.2. 7 Phylogenetic Aspects -- 2.3 Endocrine Control of Oogenesis -- 2.3.1 Previtellogenesis -- 2.3.2 Vitellogenesis -- 2.3.3 Choriogenesis -- 2.4 Influence of Extrinsic Factors on Vitellogenesis -- 2.5 Genes and Oogenesis -- Chapter 3. Sperm Transfer. Allocation. and Use -- 3.1 Sperm Passage from Sperm Tubes into Seminal Vesicles and Spermatophore -- 3.2 Sperm Activation -- 3.3 Intromission and Insemination -- 3.3.1 Marine Arthropods -- 3.3.2 Terrestrial Arthropods -- 3.4 Ovulation -- 3.5 Passage of Sperm from Spermatheca to Micropyle of Egg -- 3.6 Fertilization -- 3.6.1 Molecular Aspects.

3.6.2 Contributions of the Sperm to Successful Fertilization -- 3.7 Sperm Competition and Sexual Selection -- 3.7.1 Influence of Bacterial Parasites on Fertilization and Sperm Competition -- 3.7.2 Copulatory Inhibitors in Drosophila melanogaster -- 3.8 Copulatory Courtship -- 3.9 Oviposition -- 3.9.1 Ovipositor Function -- 3.9.2 Adaptive Significance of the Ovipositor -- 3.10 Viviparity -- Chapter 4. Sex Determination -- 4.1 Sex Chromosomes -- 4.1.1 Evolution -- 4.1.2 Discovery -- 4.2 Sex Determination in Drosophila melanogaster -- 4.2.1 Somatic Sex Determination -- 4.2.2 Sex Determination of Germ Cells -- 4.3 Sex Determination in Haplodiploid (Arrhenotokous) Insects -- 4.4 Chromosome Elimination and Sex Determination in Symphypleon Collembola -- 4.5 Environmental Effects on Sex Determination -- 4.5.1 Temperature -- 4.5.2 Nutrition and Inhibitory Pheromones -- 4.5.3 Androgenic Hormones -- 4.5.4 Maternal Hemolymph -- 4.6 Hermaphrodites -- 4.7 Gynandromorphs -- 4.8 Intersexes -- 4.9 Parasite Effects on Sex Determination -- 4.10 Why Are There Only Two Sexes? -- Chapter 5. Parthenogenesis -- 5.1 Arrhenotoky -- 5.2 Thelytoky -- 5.2.1 Automictic -- 5.2.2 Apomictic -- 5.3 Amphitoky -- 5.4 Evolutionary Considerations -- 5.4.1 Arrhenotoky -- 5.4.2 Thelytoky -- 5.5 Cyclical Parthenogenesis -- 5.5.1 Gall Wasps -- 5.5.2 Aphids -- 5.5.3 Gall Midges -- 5.5.4 Micromalthus debilis -- 5.6 Microorganisms and Parthenogenesis -- Chapter 6. Early Embryogenesis -- 6.1 Egg Structure -- 6.2 Cleavage -- 6.2.1 Control of Cleavage Rate -- 6.2.2 Movement of Cleavage Energids to the Periphery -- 6.2.3 Chromosome Elimination in Embryos of Lower Diptera -- 6.2.4 Vitellophages -- 6.3 Blastoderm Formation -- 6.4 DNA, RNA, and Protein Synthesis during Cleavage and Blastoderm Formation -- 6.5 Mitotic Domains in the Blastoderm of Flies -- 6.6 Pole Cell Formation.

6.6.1 Genes and Pole Cell Formation in Drosophila melanogaster Embryos -- 6.6.2 Substitutive Embryogeny and the Origin of Germ Cells in Orthopteroid Embryos -- 6.6.3 Germ Cell Origin in Polyembryonic Insects -- 6.7 Germ Band Formation -- 6.7.1 Factors Affecting Orientation of the Germ Band in Pentatomid (Heteroptera) Eggs -- 6.7.2 Polyembryony -- 6.8 Gastrulation and Germ Layer Formation -- 6.8.1 Genes and Gastrulation in Drosophila melanogaster Embryos -- 6.9 Blastokinesis and Embryonic Envelopes -- 6.9.1 Anatrepsis -- 6.9.2 Katatrepsis -- 6.9.3 Blastodermal and Serosal Cuticles -- 6.9.4 Blastokinesis in Long Germ Embryos and Specification of the Amnioserosa -- 6.9.5 Yolk Extrusion and Consumption in Long Germ Embryos of the Tephritid Fly Anastrepha fraterculus -- 6.10 Segmentation and Appendage Formation -- 6.10.1 Short Germ Embryos -- 6.10.2 Long Germ Embryos -- Chapter 7. Specification of the Body Plan in Insect Embryos -- 7.1 Early Experiments -- 7.1.1 Determinants and Mosaic Development -- 7.1.2 Physiological Centers -- 7.1.3 Gradients and Pattern Formation -- 7.1.4 Fate Maps -- 7.1.5 Developmental Genetics -- 7.1.6 The Compartment Hypothesis -- 7.2 Molecular Genetics of Pattern Formation in Drosophila melanogaster Embryos -- 7.2.1 Pattern-Control Genes -- 7.2.2 Evolutionary Considerations -- Chapter 8. Organogenesis -- 8.1 Mesoderm -- 8.1.1 Genes and Mesodermal Fate in Drosophila Embryos -- 8.1.2 Muscle Pioneers and Muscle Formation -- 8.1.3 Hemocytes -- 8.1.4 Body Cavity (Hemocoel) -- 8.1.5 Dorsal Vessel -- 8.1.6 Fat Body -- 8.1.7 Subesophageal Body -- 8.2 Endoderm and Ectoderm -- 8.2.1 Midgut -- 8.2.2 Foregut and Hindgut -- 8.2.3 Malpighian Tubules -- 8.3 Ectoderm -- 8.3.1 Central Nervous System -- 8.3.2 Peripheral Nervous System -- 8.3.3 Stomatogastric (Enteric) Nervous System -- 8.3.4 Tracheal System -- 8.3.5 Salivary Glands.

8.3.6 Epidermis and Imaginal Discs -- 8.3.7 Head Involution in Embryos of Higher Flies -- 8.3.8 Embryogenesis of Piercing and Sucking Mouthparts -- 8.3.9 Skeletal Apodemes -- 8.4 Primordia of Mixed Germ Layer Origin -- 8.4.1 Reproductive System -- 8.5 Other Tissues -- 8.6 Miscellaneous Events -- 8.6.1 The Role of Apoptosis in Insect Embryogenesis -- 8.6.2 Induction -- 8.6.3 Hormones and Embryogenesis -- 8.6.4 Environmental Factors -- 8.7 Overview -- 8.8 Computer Simulation of Gene Expression during Embryogenesis of Drosophila melanogaster -- Chapter 9. Postembryonic Development and Life History -- 9.1 Life History Theory -- 9.2 Hatching -- 9.3 Stage and Instar -- 9.4 Metamorphosis -- 9.4.1 Ametabola -- 9.4.2 Hemimetabola (sensu latu) (Exopterygota) -- 9.4.3 Holometabola -- 9.4.4 Recent Concepts -- 9.5 The Concept of Stase -- 9.6 Larvae and Pupae in Holometabola -- 9.6.1 Larvae -- 9.6.2 Pupae -- 9.7 Growth -- 9.7.1 Patterns of Growth -- 9.7.2 Growth and Molting -- 9.7.3 Effects of Sclerotization -- 9.7.4 Why Don't Caterpillars Grow Short and Fat? -- 9.7.5 Disproportionate (Allometric) Growth -- 9.7.6 Diet and Developmental Polymorphism -- 9.7.7 Fluctuating and Directional Asymmetry -- 9.7.8 Number of Molts -- Chapter 10. Molting and Metamorphosis -- 10.1 Molting -- 10.1.1 Sensory Continuity during a Molt -- 10.1.2 Muscular Continuity during a Molt -- 10.2 Structural Change during Metamorphosis -- 10.2.1 Metamorphosis in Higher Flies -- 10.2.2 Mesodermal Structures -- 10.2.3 Structures of Mixed Germ Layer Origin -- 10.2.4 Ectodermal Structures -- Chapter 11. Specification of the Adult Body Pattern -- 11.1 Wound Healing -- 11.2 Regeneration -- 11.2.1 The Role of Morphogens in Regeneration -- 11.2.2 The Polar Coordinate Hypothesis -- 11.2.3 The Reaction-Diffusion Hypothesis -- 11.2.4 The Cartesian Coordinate Hypothesis.

11.3 Genetic and Molecular Basis of Leg and Wing Formation -- 11.3.1 Antigenic Differences around the Circumference and between the Base and Apex of Leg Segments -- 11.3.2 Genetic Specification of Circumferential and Radial (Proximodistal) Axes in Leg and Wing Discs -- 11.4 Genetic Specification of Other External Imaginal Primordia during Development of Drosophila melanogaster -- 11.4.1 Antennal versus Leg Development -- 11.4.2 Antennae, Tarsi, Maxillary Palpus, and Proboscis -- 11.4.3 Abdominal Terga, Sterna, and Pleura -- 11.4.4 The Genital Disc -- 11.5 Effects of Symbiotic Microorganisms -- Chapter 12. Hormones, Molting, and Metamorphosis -- 12.1 Classic Experiments Revealing How Hormones Induce Molting -- 12.2 Classic Experiments Revealing How Hormones Induce Metamorphosis -- 12.3 Neurosecretory Cells and Endocrine Organs -- 12.4 The Developmental Hormones -- 12.4.1 20-OH Ecdysone -- 12.4.2 Prothoracicotropic Hormone -- 12.4.3 Other Ecdysiotropins -- 12.4.4 Allatotropin -- 12.4.5 Juvenile Hormones -- 12.4.6 Allatostatins -- 12.4.7 Precocenes as Antiallatotropins -- 12.4.8 Eclosion Hormone -- 12.4.9 Manduca sexta Pre-ecdysis- and Ecdysis-Triggering Hormones -- 12.4.10 Bursicon -- 12.4.11 Diapause Hormone -- 12.5 The Interaction of Hormones during Molting and Metamorphosis -- 12.6 The Role of Critical Size in Molting and Metamorphosis -- 12.6.1 Molting -- 12.6.2 Size, Growth, and Differentiation of Wing Imaginal Discs in Lepidopterans -- 12.6.3 Metamorphosis -- 12.7 Endocrine Control of Molting and Metamorphosis in Other Arthropods -- 12.8 Hormones, Polymorphism, and Polyphenism -- 12.8.1 Polyphenism in Nonsocial Insects -- 12.8.2 Polymorphism in Eusocial Insects -- 12.9 Future Developments -- Chapter 13. Ontogeny and Hexapod Evolution -- 13.1 The Origin of Taxonomic Units or Taxa -- 13.1.1 The Role of Variation and Natural Selection.

13.1.2 Speciation.

Life scientists are increasingly drawn to the study of comparative evolutionary biology. Insect Development and Evolution is the first synthesis of knowledge of insect development within an evolutionary framework and the first to survey the genetic.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.