ORPP logo
Image from Google Jackets

Mass Transfers and Physical Data Estimation.

By: Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2019Copyright date: ©2019Edition: 1st edDescription: 1 online resource (229 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119663263
Subject(s): Genre/Form: Additional physical formats: Print version:: Mass Transfers and Physical Data EstimationLOC classification:
  • TP156.M3 .B463 2019
Online resources:
Contents:
Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- Introduction -- 1. Determination of Physical Data -- 1.1. Introduction -- 1.2. Estimating critical properties -- 1.2.1. Estimating critical temperature -- 1.2.2. Estimating critical pressure -- 1.2.3. Estimating the critical volume: Benson correlation (Benson, 1948) -- 1.2.4. Estimating the critical compressibility factor -- 1.3. Methods for estimating boiling temperature -- 1.4. Methods for estimating density -- 1.4.1. Estimating liquid densities -- 1.5. Methods for estimating viscosity -- 1.5.1. Estimating viscosities of pure liquids -- 1.5.2. Correlations for the viscosity of liquid mixtures -- 1.5.3. Estimating gas viscosities -- 1.6. Methods for estimating specific heat -- 1.6.1. Heat capacities of petroleum oils -- 1.6.2. Heat capacities of petroleum vapors -- 1.6.3. Estimations for anthracite and bituminous coals -- 1.6.4. Heat capacities for cement, mortar and sand -- 1.6.5. Heat capacities of organic liquids -- 1.7. Estimating latent heat of vaporization -- 1.7.1. Rapid estimations -- 1.7.2. Calculating latent heat from critical data -- 1.7.3. Chen correlation -- 1.7.4. Calculations at different temperatures -- 1.8. Estimating expansion coefficients β -- 1.9. Methods for estimating heat conductivity -- 1.9.1. Heat conductivity of metals and alloys -- 1.9.2. Heat conductivity of wood -- 1.9.3. Conductivity of chains of liquid hydrocarbons -- 1.9.4. Conductivity of gases and vapors -- 1.9.5. Conductivity of monatomic gases -- 1.9.6. Conductivity of non-polar gases with linear molecules -- 1.10. Physical properties of water -- 1.10.1. Correlation of density -- 1.10.2. Heat capacity -- 1.10.3. Correlation of heat conductivity -- 1.10.4. Correlation of viscosity -- 1.10.5. Correlation of thermal diffusivity -- 1.10.6. Correlation of the Prandtl number.
1.10.7. Correlation for calculating the expansion coefficient -- 1.10.8. Correlation for calculating the saturating pressure -- 1.10.9. Correlation for calculating latent heat -- 1.11. Physical properties of air -- 1.11.1. Correlation of density -- 1.11.2. Heat capacity -- 1.11.3. Correlation of heat conductivity -- 1.11.4. Correlation of viscosity -- 1.11.5. Correlation of thermal diffusivity -- 1.11.6. Correlation of the Prandtl number -- 1.11.7. Correlation for calculating the expansion coefficient -- 2. Determinants and Parameters of Mass Transfer -- 2.1. Introduction -- 2.2. Relative transfer velocities -- 2.2.1. Velocity relating to average mass velocity -- 2.2.2. Velocity relative to average molar velocity -- 2.3. Amount of matter transferred -- 2.4. Expressions of flux density -- 2.4.1. Total flux -- 2.4.2. Specific fluxes -- 2.5. Operations on diffusion flux densities -- 2.5.1. Total density as a function of the specific densities -- 2.5.2. Sum of mass densities with respect to v -- 2.5.3. Sum of molar flux densities with respect to v* -- 2.5.4. Sum of mass flux densities with respect to a mobile reference frame at v* -- 2.6. Relations between flux densities fi and ji -- 2.7. Relations between flux densities Fi and Ji* -- 3. Fick's First Law: Diffusion Coefficients -- 3.1. Introduction -- 3.2. Fick's first law -- 3.2.1. Expressing the flux density vector -- 3.2.2. Similarities to energy and momentum transfer laws -- 3.2.3. Convective analogy -- 3.3. Fick's first law in different forms -- 3.4. Determining diffusion coefficients from tabulated data -- 3.4.1. Gaseous binary diffusion coefficients -- 3.4.2. Illustration: diffusion coefficients of CO2 in air and in water vapor -- 3.4.3. Diffusion coefficients for liquid binaries -- 3.5. Estimating diffusion coefficients from correlations -- 3.5.1. Estimating gaseous binary diffusion coefficients.
3.5.2. Estimating diffusion coefficients of liquid binaries -- 3.6. Diffusion coefficients for multicomponent mixtures -- 3.6.1. Stefan-Maxwell equation -- 3.6.2. Effective diffusion coefficient for complex mixtures -- 4. Fick's Second Law: Macroscopic Balances -- 4.1. Introduction -- 4.2. Overall continuity equation -- 4.2.1. The accumulation term -- 4.2.2. The generation term -- 4.2.3. The term I - O -- 4.2.4. The balance equation -- 4.2.5. The balance equation in Cartesian coordinates -- 4.3. Particular continuity equations -- 4.3.1. The term Ii - Oi -- 4.3.2. The accumulation term -- 4.3.3. The generation term -- 4.3.4. Continuity equations in molar terms -- 4.4. Illustration: diffusion with chemical reaction -- 4.5. Illustration: diffusion of a component in a stagnant mixture -- 4.6. Reading: background to Fick's Laws -- 5. Exercises and Solutions -- EXERCISE 5.1. Calculating a mixture's pseudocritical temperature -- EXERCISE 5.2. Estimating critical pressure and comparisons -- EXERCISE 5.3. Calculating mole and mass fractions -- EXERCISE 5.4. Differentials of mole and mass fractions -- EXERCISE 5.5. Molar fluxes of ethanol -- EXERCISE 5.6. Sum of the densities of the mass fluxes -- EXERCISE 5.7. Mass fluxes with respect to v* -- EXERCISE 5.8. Diffusion flux in a gaseous mixture -- EXERCISE 5.9. Calculating the diffusion coefficient of an acid -- EXERCISE 5.10. Diffusion coefficient of SO2 in air -- EXERCISE 5.11. Pollution by sulfuric acid -- EXERCISE 5.12. Diffusion in a gas-liquid reactor -- EXERCISE 5.13. Diffusion of oxygen in a cartilage reconstruction gel -- EXERCISE 5.14. Osmotic calculations -- EXERCISE 5.15. Diffusion of a component in a stagnant mixture -- EXERCISE 5.16. Counter-current diffusion in a binary mixture -- EXERCISE 5.17. Decontamination by diffusion -- EXERCISE 5.18. Diffusion in solid catalysts -- Appendices.
Appendix 1: Database -- A1.1. Introduction -- A1.2. Critical constants -- A1.3. Binary diffusion coefficients -- A1.3.1. Diffusion coefficients for gases and vapors -- A1.3.2. Diffusion coefficients for liquids -- A1.4. Collision diameters and interaction energies -- A1.5. ΩAB values based on Lennard-Jones potential -- A1.6. Diffusion volume -- A1.7. Densities -- A1.8. Heat capacities -- A1.9. Thermal conductivities -- A1.10. Data on heat insulation materials -- A1.11. Physical properties of water -- A1.12. Physical properties of air -- A1.13. Physical properties of nanofluids -- A1.14. Physical properties of molten salts -- A1.15. Physical properties of liquid metals -- A1.16. Unit conversion tables -- A1.17. Fundamental constants -- Appendix 2: Development of Estimations by Regression -- A2.1. Determining a linear estimator -- A2.2. The estimator's expression and expected error -- References -- Index -- Other titles from iSTE in Energy -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- Introduction -- 1. Determination of Physical Data -- 1.1. Introduction -- 1.2. Estimating critical properties -- 1.2.1. Estimating critical temperature -- 1.2.2. Estimating critical pressure -- 1.2.3. Estimating the critical volume: Benson correlation (Benson, 1948) -- 1.2.4. Estimating the critical compressibility factor -- 1.3. Methods for estimating boiling temperature -- 1.4. Methods for estimating density -- 1.4.1. Estimating liquid densities -- 1.5. Methods for estimating viscosity -- 1.5.1. Estimating viscosities of pure liquids -- 1.5.2. Correlations for the viscosity of liquid mixtures -- 1.5.3. Estimating gas viscosities -- 1.6. Methods for estimating specific heat -- 1.6.1. Heat capacities of petroleum oils -- 1.6.2. Heat capacities of petroleum vapors -- 1.6.3. Estimations for anthracite and bituminous coals -- 1.6.4. Heat capacities for cement, mortar and sand -- 1.6.5. Heat capacities of organic liquids -- 1.7. Estimating latent heat of vaporization -- 1.7.1. Rapid estimations -- 1.7.2. Calculating latent heat from critical data -- 1.7.3. Chen correlation -- 1.7.4. Calculations at different temperatures -- 1.8. Estimating expansion coefficients β -- 1.9. Methods for estimating heat conductivity -- 1.9.1. Heat conductivity of metals and alloys -- 1.9.2. Heat conductivity of wood -- 1.9.3. Conductivity of chains of liquid hydrocarbons -- 1.9.4. Conductivity of gases and vapors -- 1.9.5. Conductivity of monatomic gases -- 1.9.6. Conductivity of non-polar gases with linear molecules -- 1.10. Physical properties of water -- 1.10.1. Correlation of density -- 1.10.2. Heat capacity -- 1.10.3. Correlation of heat conductivity -- 1.10.4. Correlation of viscosity -- 1.10.5. Correlation of thermal diffusivity -- 1.10.6. Correlation of the Prandtl number.

1.10.7. Correlation for calculating the expansion coefficient -- 1.10.8. Correlation for calculating the saturating pressure -- 1.10.9. Correlation for calculating latent heat -- 1.11. Physical properties of air -- 1.11.1. Correlation of density -- 1.11.2. Heat capacity -- 1.11.3. Correlation of heat conductivity -- 1.11.4. Correlation of viscosity -- 1.11.5. Correlation of thermal diffusivity -- 1.11.6. Correlation of the Prandtl number -- 1.11.7. Correlation for calculating the expansion coefficient -- 2. Determinants and Parameters of Mass Transfer -- 2.1. Introduction -- 2.2. Relative transfer velocities -- 2.2.1. Velocity relating to average mass velocity -- 2.2.2. Velocity relative to average molar velocity -- 2.3. Amount of matter transferred -- 2.4. Expressions of flux density -- 2.4.1. Total flux -- 2.4.2. Specific fluxes -- 2.5. Operations on diffusion flux densities -- 2.5.1. Total density as a function of the specific densities -- 2.5.2. Sum of mass densities with respect to v -- 2.5.3. Sum of molar flux densities with respect to v* -- 2.5.4. Sum of mass flux densities with respect to a mobile reference frame at v* -- 2.6. Relations between flux densities fi and ji -- 2.7. Relations between flux densities Fi and Ji* -- 3. Fick's First Law: Diffusion Coefficients -- 3.1. Introduction -- 3.2. Fick's first law -- 3.2.1. Expressing the flux density vector -- 3.2.2. Similarities to energy and momentum transfer laws -- 3.2.3. Convective analogy -- 3.3. Fick's first law in different forms -- 3.4. Determining diffusion coefficients from tabulated data -- 3.4.1. Gaseous binary diffusion coefficients -- 3.4.2. Illustration: diffusion coefficients of CO2 in air and in water vapor -- 3.4.3. Diffusion coefficients for liquid binaries -- 3.5. Estimating diffusion coefficients from correlations -- 3.5.1. Estimating gaseous binary diffusion coefficients.

3.5.2. Estimating diffusion coefficients of liquid binaries -- 3.6. Diffusion coefficients for multicomponent mixtures -- 3.6.1. Stefan-Maxwell equation -- 3.6.2. Effective diffusion coefficient for complex mixtures -- 4. Fick's Second Law: Macroscopic Balances -- 4.1. Introduction -- 4.2. Overall continuity equation -- 4.2.1. The accumulation term -- 4.2.2. The generation term -- 4.2.3. The term I - O -- 4.2.4. The balance equation -- 4.2.5. The balance equation in Cartesian coordinates -- 4.3. Particular continuity equations -- 4.3.1. The term Ii - Oi -- 4.3.2. The accumulation term -- 4.3.3. The generation term -- 4.3.4. Continuity equations in molar terms -- 4.4. Illustration: diffusion with chemical reaction -- 4.5. Illustration: diffusion of a component in a stagnant mixture -- 4.6. Reading: background to Fick's Laws -- 5. Exercises and Solutions -- EXERCISE 5.1. Calculating a mixture's pseudocritical temperature -- EXERCISE 5.2. Estimating critical pressure and comparisons -- EXERCISE 5.3. Calculating mole and mass fractions -- EXERCISE 5.4. Differentials of mole and mass fractions -- EXERCISE 5.5. Molar fluxes of ethanol -- EXERCISE 5.6. Sum of the densities of the mass fluxes -- EXERCISE 5.7. Mass fluxes with respect to v* -- EXERCISE 5.8. Diffusion flux in a gaseous mixture -- EXERCISE 5.9. Calculating the diffusion coefficient of an acid -- EXERCISE 5.10. Diffusion coefficient of SO2 in air -- EXERCISE 5.11. Pollution by sulfuric acid -- EXERCISE 5.12. Diffusion in a gas-liquid reactor -- EXERCISE 5.13. Diffusion of oxygen in a cartilage reconstruction gel -- EXERCISE 5.14. Osmotic calculations -- EXERCISE 5.15. Diffusion of a component in a stagnant mixture -- EXERCISE 5.16. Counter-current diffusion in a binary mixture -- EXERCISE 5.17. Decontamination by diffusion -- EXERCISE 5.18. Diffusion in solid catalysts -- Appendices.

Appendix 1: Database -- A1.1. Introduction -- A1.2. Critical constants -- A1.3. Binary diffusion coefficients -- A1.3.1. Diffusion coefficients for gases and vapors -- A1.3.2. Diffusion coefficients for liquids -- A1.4. Collision diameters and interaction energies -- A1.5. ΩAB values based on Lennard-Jones potential -- A1.6. Diffusion volume -- A1.7. Densities -- A1.8. Heat capacities -- A1.9. Thermal conductivities -- A1.10. Data on heat insulation materials -- A1.11. Physical properties of water -- A1.12. Physical properties of air -- A1.13. Physical properties of nanofluids -- A1.14. Physical properties of molten salts -- A1.15. Physical properties of liquid metals -- A1.16. Unit conversion tables -- A1.17. Fundamental constants -- Appendix 2: Development of Estimations by Regression -- A2.1. Determining a linear estimator -- A2.2. The estimator's expression and expected error -- References -- Index -- Other titles from iSTE in Energy -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.