Springer Handbook of Nanotechnology.
Material type:
- text
- computer
- online resource
- 9783662543573
- 620.5
- TK7875
Intro -- Foreword -- Preface for the Fourth Edition -- About the Editor -- List of Authors -- Contents -- List of Abbreviations -- 1 Introduction to Nanotechnology -- 1.1 Nanotechnology - Definitions and Examples -- 1.2 History and Early Research Expenditures -- 1.3 Governance of the National Nanotechnology Initiative -- 1.4 Nanotechnology R& -- D Funding Since 2001 -- 1.5 Worldwide R& -- D Investments and Output -- 1.6 Translation of Basic Research to Technology Commercialization -- 1.7 Nanoscience and Nanotechnology Education -- 1.8 Summary and Outlook -- 1.9 Organization of the Handbook -- References -- Part A Micro/Nanofabrication Techniques -- 2 Molecule-Based Devices -- 2.1 Chemical Approaches to Nanostructured Materials -- 2.2 Molecular Switches and Logic Gates -- 2.3 Solid-State Devices -- 2.4 Conclusions and Outlook -- References -- 3 Introduction to Micro-/Nanofabrication -- 3.1 Basic Microfabrication Techniques -- 3.2 MEMS Fabrication Techniques -- 3.3 Nanofabrication Techniques -- 3.4 Summary and Conclusions -- References -- 4 3-D Nanostructure Fabrication by Focused-Ion Beam, Electron- and Laser Beam -- 4.1 Various 3-D Nanostructure Fabrication Techniques -- 4.2 3-D Nanostructure Fabrication by Focused Ion Beam -- 4.3 3-D Nanostructure Fabrication by Electron Beam -- 4.4 3-D Nanostructure Fabrication by Laser -- References -- 5 Nanoimprint Lithography -- 5.1 Emerging Nanopatterning Methods -- 5.2 Nanoimprint Process -- 5.3 Tools and Materials for Nanoimprint -- 5.4 Applications -- 5.5 Conclusion and Outlook -- References -- 6 Stamping Techniques for Micro- and Nanofabrication -- 6.1 High-Resolution Stamps -- 6.2 Microcontact Printing -- 6.3 Nanotransfer Printing -- 6.4 Applications -- 6.5 Conclusions -- References -- 7 Materials Aspects of Micro- and Nanoelectromechanical Systems -- 7.1 Silicon and its Commonly-Used Derivatives.
7.2 Germanium-Based Materials -- 7.3 Metals -- 7.4 Semiconductors for Harsh Environment Applications -- 7.5 GaAs, InP and Related III-V Materials -- 7.6 Piezoelectric Materials -- 7.7 Polymer Materials -- 7.8 Future Trends -- References -- Part B Nanomaterial and Nanostructures -- 8 Carbon Nanotubes -- 8.1 Structure of Carbon Nanotubes -- 8.2 Synthesis of Carbon Nanotubes -- 8.3 Growth Mechanisms of Carbon Nanotubes -- 8.4 Properties of Carbon Nanotubes -- 8.5 Carbon Nanotube-Based Nano-Objects (Carbon Meta-Nanotubes) -- 8.6 Carbon-Nanotube-Containing Materials (Composites) -- 8.7 Current Applications of Carbon Nanotubes (on the Market) -- 8.8 Toxicity and Environmental Impact of Carbon Nanotubes -- 8.9 Concluding Remarks -- References -- 9 Nanowires -- 9.1 Synthesis -- 9.2 Characterization and Physical Properties of Nanowires -- 9.3 Applications -- 9.4 Concluding Remarks -- References -- 10 Nanoribbons -- 10.1 Graphene Nanoribbons -- 10.2 Electronic and Magnetic Properties -- 10.3 Characterizations -- 10.4 Syntheses: Top-Down Methods and Bottom-Up Methods -- 10.5 Potential Applications -- 10.6 Conclusions -- References -- 11 Nanoparticles and Their Applications -- 11.1 Overview -- 11.2 NPs Classification and Synthesis -- 11.3 Properties of NPs -- 11.4 Applications of NPs -- 11.5 Summary -- References -- 12 Graphene -- 12.1 Methods of Production -- 12.2 Properties -- 12.3 Characterization -- 12.4 Applications -- 12.5 Conclusions and Outlook -- References -- Part C MEMS/NEMS -- 13 MEMS/NEMS Devices and Applications -- 13.1 MEMS Devices and Applications -- 13.2 NEMS Devices and Applications -- 13.3 Challenges and Perspectives -- References -- 14 Single-Walled Carbon Nanotube Sensor Concepts -- 14.1 Sensor Design Considerations -- 14.2 Sensor Fabrication: SWNT Synthesis and Integration -- 14.3 Summary of State-of-the-Art, Applications Examples.
14.4 Concluding Remarks -- References -- 15 Nanomechanical Cantilever Array Sensors -- 15.1 Technique -- 15.2 Cantilever Array Sensors -- 15.3 Modes of Operation -- 15.4 Microfabrication -- 15.5 Measurement Setup -- 15.6 Functionalization Techniques -- 15.7 Applications -- 15.8 Conclusions and Outlook -- References -- 16 Microfluidic Devices and Their Applications -- 16.1 Preface -- 16.2 Historical Developments -- 16.3 Dominant Phenomenon and Micro-Nanofluidic Design -- 16.4 Fabrication of Micro-Nanofluidic Devices -- 16.5 Applications -- 16.6 Outlook and Future Directions -- References -- 17 Microfluidic Micro/Nano Droplets -- 17.1 Introduction to Micro/Nano Droplet Microfluidic Technologies -- 17.2 Overview of Current Trends in Droplet Microfluidic Technologies -- 17.3 Fundamental Designs and Techniques for Microfluidic Generation of Droplets -- 17.4 Microfluidic Micro-/Nanodroplet Applications -- 17.5 Conclusion -- References -- 18 Nanorobotics -- 18.1 Overview of Nanorobotics -- 18.2 Actuation at Nanoscales -- 18.3 Nanorobotic Manipulation Systems -- 18.4 Nanorobotic Assembly -- 18.5 Applications -- References -- Part D BioMEMS/NEMS -- 19 Applications of MEMS to Cell Biology -- 19.1 Biological Background -- 19.2 High Resolution Microscopy Methods for Live Cell Imaging -- 19.3 Measuring Mechanical Properties on Living Cells -- 19.4 Cancer Detection Using Nanomechanical Sensors -- 19.5 Measurement of Cell Adhesion Using Cantilever Based Force Sensor -- 19.6 Manipulation of Cells Using MEMS Cantilevers -- 19.7 Mass Measurements of Single Cells Using Resonant Cantilevers -- 19.8 Characterization of Antibiotic Action Using MEMS Devices -- 19.9 Conclusions and Outlook -- References -- 20 Contact-free Mechanical Manipulation of Biological Materials -- 20.1 Interaction of Laser Light with Biological Material.
20.2 Optical and Magnetic Tweezers for Single-Molecule Manipulations -- 20.3 Optical and Electric Forces for the Manipulation of Whole Cells -- 20.4 Hydrodynamic Shear Forces for the Manipulation of Single Cells -- 20.5 Conclusion and Outlook -- References -- 21 Nano-Particles for Biomedical Applications -- 21.1 Overview -- 21.2 Rational Design of Nanoconstructs -- 21.3 Multifunctional Polymeric Nanoconstructs -- 21.4 Sensing and Drug Delivery with Porous Silicon Nanomaterials -- 21.5 Nanomedicine Synthesis by Microfluidics Technology -- 21.6 Electroless Formation of Metal Nanoparticle Aggregates -- 21.7 2-D and 3-D Optical Nanostructures -- References -- 22 Biological Molecules in Therapeutic Nanodevices -- 22.1 Definitions and Scope -- 22.2 Assembly Approaches -- 22.3 Sensing Devices -- 22.4 Concluding Remarks: Barriers to Practice -- References -- Part E Nanometrology -- 23 Scanning Probe Microscopy - Principle of Operation, Instrumentation and Probes -- 23.1 Scanning Tunneling Microscope -- 23.2 Atomic Force Microscope -- 23.3 AFM Instrumentation and Analyses -- 23.4 Conclusion -- References -- 24 Low-Temperature Scanning Probe Microscopy -- 24.1 Microscope Operation at Low Temperatures -- 24.2 Instrumentation -- 24.3 Scanning Tunneling Microscopy and Spectroscopy -- 24.4 Scanning Force Microscopy and Spectroscopy -- 24.5 Summary -- References -- 25 Biomedical Sensing with the Atomic Force Microscope -- 25.1 Topographical Imaging of Biological Samples -- 25.2 Single-Molecule Force Spectroscopy (SMFS) -- 25.3 Simultaneous Topography and Recognition Imaging (TREC) -- 25.4 AFM Biomedical Sensing - Examples -- 25.5 Perspectives and Concluding Remarks -- References -- 26 Superresolution Microscopy -- 26.1 Overview -- 26.2 Scanning Aperture Techniques -- 26.3 4-Pi Microscopy -- 26.4 Enhancement/Depletion Techniques -- 26.5 Photoactivated Localization.
26.6 Structured Illumination -- 26.7 Light-Sheet Microscopy -- 26.8 Comparison of Techniques for Live-Cell Imaging -- 26.9 Summary -- References -- Part F Bio/Nanotribology and Bio/Nanomechanics -- 27 Nanotribology, Nanomechanics and Materials Characterization -- 27.1 Description of AFM/FFM and Various Measurement Techniques -- 27.2 Surface Imaging, Friction, and Adhesion -- 27.3 Micro/Nanoscale Wear and Scratching, Local Deformation, and Nanofabrication/Nanomachining -- 27.4 Indentation -- 27.5 Boundary Lubrication -- 27.6 Conclusion -- References -- 28 Surface Forces and Nanorheology of Molecularly Thin Films -- 28.1 Types of Surface Forces -- 28.2 Methods Used to Study Surface Forces -- 28.3 Normal Forces Between Dry (Unlubricated) Surfaces -- 28.4 Normal Forces Between Surfaces in Liquids -- 28.5 Adhesion and Capillary Forces -- 28.6 Introduction: Different Modes of Friction -- 28.7 Relationship Between Adhesion and Friction -- 28.8 Liquid Lubricated Surfaces -- 28.9 Effects of Nanoscale Texture on Friction -- References -- 29 Atomic Scale Friction Phenomena -- 29.1 Friction Force Microscopy in Selected Environments -- 29.2 The Prandtl-Tomlinson Model -- 29.3 Friction Experiments on the Atomic Scale -- 29.4 Thermal Effects on Atomic Friction -- 29.5 Friction on the Nanometer Scale -- 29.6 Wear on the Atomic Scale -- 29.7 Noncontact Friction -- 29.8 Single Molecule Friction -- 29.9 Conclusion -- References -- 30 Computer Simulations of Nanometer-Scale Indentation and Friction -- 30.1 Computational Details -- 30.2 Indentation -- 30.3 Friction and Lubrication -- 30.4 Conclusions -- References -- 31 Cellular Nanomechanics -- 31.1 Overview -- 31.2 Structural Components of a Cell -- 31.3 Experimental Methods -- 31.4 Theoretical and Computational Descriptions -- 31.5 Mechanics of Subcellular Structures -- 31.6 Current Understanding and Future Needs.
References.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.