Methanol : Science and Engineering.
Material type:
- text
- computer
- online resource
- 9780444640109
- 661.824
- TP359.M4 .B375 2018
Front Cover -- Methanol: Science and Engineering -- Copyright -- Contents -- List of Contributors -- Preface -- Part 1: Science and Production -- Chapter 1: Methanol Production and Applications: An Overview -- 1. Introduction -- 2. Methanol Production -- 2.1. Methanol From Natural Gas -- 2.1.1. The BASF process-high-pressure method -- 2.1.2. The ICI process-low-pressure method -- 2.2. Methanol From Coal and Biomass -- 2.3. Methanol From Catalytic Hydrogenation of CO2 -- 3. Methanol Application -- 3.1. Methanol to DiMethylEther -- 3.2. Hydrogen Production -- 3.2.1. Methanol decomposition -- 3.2.2. Methanol steam reforming -- 3.2.3. Methanol-water solution electrolysis -- 3.2.4. Partial oxidation/autothermal reforming -- 3.3. Methanol Fuel Cells -- Conclusions and Future Trends -- References -- Further Reading -- Chapter 2: State of the Art of Conventional Reactors for Methanol Production -- 1. Introduction -- 2. Catalysts for Methanol Synthesis -- 3. Reactors for Methanol Synthesis -- 3.1. BASF High Pressure Process -- 3.2. ICI's 100atm Methanol Synthesis Process -- 3.3. Haldor Topsoe A/S Low-Pressure Methanol Synthesis Process -- 3.4. Kvaerner Methanol Synthesis Process -- 3.5. Krupp Uhde's Methanol Synthesis Technology -- 3.6. Lurgi Öl-Gas-Chemie GmbH Process -- 3.7. Synetix LPM Process -- 3.8. Liquid-Phase Methanol Process -- 4. Methanol Reactors -- 4.1. Multiple Bed Reactors -- 4.2. Single Bed Reactors -- 5. Conclusions and Future Trends -- References -- Further Reading -- Chapter 3: Fossil or Renewable Sources for Methanol Production? -- 1. Introduction -- 2. Why Methanol From Biomass? -- 3. Different Kinds of Biomass -- 4. Traditional Process for Methanol Production -- 4.1. Chemistry -- 4.2. Catalytic Systems -- 4.3. Kinetic Modeling -- 4.4. Transport Phenomena Around and Inside the Catalyst -- 5. Biomass-Based Processes.
5.1. Thermal Treatment of Biomasses -- 5.2. CO2 Conversion -- 5.2.1. Biological processes -- 5.2.2. Catalytic hydrogenation -- 5.2.3. Acid gas conversion AG2S -- 5.2.4. CO2 photoreduction to methanol -- 5.2.5. Biogas conversion by tri-reforming -- 6. Biomass-to-Methanol Process Design -- 7. Current Problems With Biomethanol Production and Conclusions -- References -- Further Reading -- Chapter 4: Waste as a Source of Carbon for Methanol Production -- 1. Introduction -- 1.1. Biomethanol -- 1.2. Biomethanol Uses and Advantages -- 2. Producing Biomethanol From MSW -- 3. Plant Configuration -- 3.1. Removal of Sulfur Components -- 3.2. The Correction of the R Ratio -- 4. Energy Efficiency of the Conversion Process -- 5. Conclusion -- References -- Chapter 5: Direct Synthesis of Methanol and Dimethyl Ether From a CO2-Rich Feedstock: Thermodynamic Analysis and Selectiv ... -- 1. Introduction -- 2. Thermodynamic Analysis -- 2.1. Thermodynamic Analysis of the Direct DME Synthesis Process -- 2.2. Results and Comments -- 3. Methanol/DME Synthesis Membrane Reactor Application -- 3.1. Membrane Reactor Concept -- 3.2. Steam Water Selective Membranes Selection -- 3.3. Membrane Reactor Process Configurations -- 4. Conclusions -- References -- Chapter 6: Direct Methane to Methanol: Historical and Kinetics Aspects -- 1. Introduction -- 2. Historical Aspects of the DMTM Process -- 3. Key Features of the DMTM Mechanism -- 3.1. Oxidation of Methane at Moderate Temperatures -- 3.2. Mechanism of the Gas-Phase DMTM Process -- 3.3. Main Kinetic Features of the DMTM -- 3.4. Catalysis and Promotion of the DMTM Process -- 4. Parameters of the Process -- 4.1. Effect of Pressure on the Temperature and Rate of the Process -- 4.2. Effect of Pressure on the Yield of the Partial Methane Oxidation Products -- 4.3 Factors Determining the Role of Pressure in the DMTM Process.
4.4 Effect of Temperature on the Yield of the Products -- 4.5. Effect of the Oxygen Concentration (CH4/O2 Ratio) on the Selectivity and Yield of the Products -- 4.6. Influence of the Oxygen Concentration on the Reaction Temperature and Reaction Rate -- 4.7. Reaction Time -- 4.8. Specifics of the Organization of the Process -- 5. Conclusions -- References -- Further Reading -- Chapter 7: Direct Methane to Methanol: Reaction Products and Effect of Gas Composition -- 1. Introduction -- 2. Oxidation Products -- 2.1. Main Products of the DMTM Process -- 2.2. CH3OH/CH2O Ratio -- 2.3. CO/CO2 Ratio -- 2.4. By-Products -- 2.5. DeltaCH4/DeltaO2 Ratio -- 2.6. Yield of Methanol and Oxygenates -- 2.7. Oxidation Products of Methane Homologues -- 3. Effect of the Gas Composition -- 3.1. Hydrocarbons -- 3.2. Hydrogen -- 3.3. Carbon Monoxide -- 3.4. Inerts -- 4. Partial Oxidation of Methane Homologues -- 4.1. Ethane -- 4.2. Propane -- 4.3. Butane and Heavier Hydrocarbons -- 4.4. General Features of the Oxidation of Alkanes at High Pressures -- 5. Conclusions -- References -- Chapter 8: Direct Methane to Methanol: Promising Technologies Based on the DMTM Process -- 1. Introduction -- 2. Industrial Experience of the Partial Oxidation of Hydrocarbon Gases to Oxygenates -- 3. Conceptual Schemes of the Partial Oxidation of Natural Gas to Oxygenates -- 4. Innovative Technologies Based on the Gas-Phase Oxidation of Hydrocarbon Gases to Oxygenates -- 5. Conclusions -- References -- Chapter 9: Reforming and Partial Oxidation Reactions of Methanol for Hydrogen Production -- 1. Introduction -- 2. Hydrogen Production -- 2.1. Fuel Processing -- 2.1.1. Steam reforming, partial oxidation, and autothermal reforming -- 2.1.2. Hydrogen production from methanol feedstock -- 2.1.2.1. Steam reforming of methanol -- 2.1.2.2. Partial oxidation (POX) of methanol.
3. New Technologies for Hydrogen Production From Methanol -- 3.1. Membrane and Membrane Reactor -- 4. Conclusion and Future Trends -- References -- Part 2: Application and Innovation -- Chapter 10: Methanol to Dimethyl Ether -- 1. Methanol: A Key Building Block -- 2. DME: Fuel of the 21st Century -- 3. Routes of DME Production -- 3.1. Direct Route -- 3.2. Indirect Route -- 4. Chemistry of Methanol Dehydration -- 5. Kinetic Study of Methanol Dehydration -- 6. Reactors of Methanol Dehydration -- 6.1. Fixed Bed Reactors -- 6.2. Membrane Assisted and Thermally Coupled Reactors -- 6.3. Reactive Distillation -- 7. Conclusions and Future Trends -- References -- Chapter 11: Methanol As An Internal Combustion on Engine Fuel -- 1. Introduction -- 2. Methanol Fuel Used on IC Engines -- 2.1. Engine Using Pure Methanol (M100) as Fuel -- 2.2. Engine Using Methanol-Gasoline Blends as Fuel -- 2.3. Engine Using Methanol-Diesel Blends as Fuel -- 2.4. Engine Using Methanol-Hydrogen Blends as Fuel -- 2.5. Engine Using Methanol-Biodiesel Blends as Fuel -- 2.6. Engine Using Methanol-Dimethyl Ether (DME) Blends as Fuel -- 2.7. Engine Using Methanol-LPG Blends as Fuel -- 2.8. Engine Using Methanol-Water Blends as Fuel -- 2.9. Engine Using Methanol-Ethanol-Gasoline Blends as Fuel -- 2.10. Engine Using Methanol-Ethanol-Diesel Blends as Fuel -- 2.11. Engine Using Methanol-Diesel-Isopropyl Alcohol Blends as Fuel -- 2.12. Engine Using Methanol-Diesel-Biodiesel Blends as Fuel -- 2.13. Engine Using Methanol-Diesel-Dodecanol Blends as Fuel -- 2.14. Engine Using Methanol-Gasoline-n-Butanol Blends as Fuel -- 3. Conclusions and Recommendations -- References -- Further Reading -- Chapter 12: From Methanol to Electricity and Hydrogen Through Bioelectrochemical Systems -- 1. Introduction -- 1.1. Bioelectrochemical Systems: Fundamentals.
1.2. Wastewater Treatment and Valorization in Bioelectrochemical Systems -- 2. Electricity Production From Methanol in Bioelectrochemical Systems -- 3. Hydrogen Production From Methanol in Bioelectrochemical Systems -- 3.1. Hydrogen Production in Single-Chamber MEC -- 3.2. Hydrogen Production in Double-Chamber MEC -- 4. Conclusion and Future Trends -- Chapter 13: Methanol Separation From Liquid Mixtures Via Pervaporation Using Membranes -- 1. Introduction on Pervaporation -- 2. Transport Mechanism in PV -- 3. Application of PV in Organic/Organic (O/O) Separation -- 3.1. Separation of Polar/Nonpolar Solvent Mixtures -- 3.2. Separation of Aromatic/Alicyclic Mixtures -- 3.3. Separation of Aromatic Isomers Mixtures -- 4. Methanol Purification by PV -- 4.1. Methanol/Organic Separations -- 4.2. Methanol/Water Separation -- 5. Conclusions -- References -- Chapter 14: Direct Methanol Fuel Cell -- 1. Introduction to Fuel Cell -- 2. Direct Methanol Fuel Cell (DMFC) Components -- 3. Configuration and Basic Principles of DMFC -- 4. Electrochemical Processes in DMFC -- 5. State of Fuel Input -- 6. Feed Mode -- 7. Challenges and Barrier Issues of DMFC -- 7.1. Methanol Cross Over -- 7.2. Methanol Management -- 7.3. Carbon Dioxide Management -- 7.4. Water Management -- 7.5. Oxygen Management -- 8. Durability and Stability -- 9. Cost and Commercialization -- 10. Conclusion and Future Trends -- References -- Further Reading -- Chapter 15: Coproduction of Electrical Energy and Methanol in IGCC Plants -- 1. Introduction -- 2. IGCC Plant Technology -- 2.1. Methanol as Byproducts of the IGCC Plant -- 3. Application of Membrane Processes in Coproduction of Methanol and Electricity -- 3.1. Membrane Applications for IGCC Process -- 3.1.1. H2 selective membrane -- 3.1.2. CO2 selective membrane -- 3.1.3. O2 selective membrane.
3.2. Membrane Applications for Methanol Production From Captured CO2.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.