Power System Protective Relaying.
Material type:
- text
- computer
- online resource
- 9781498745512
- 621.317
- TK2861.D37 2018
Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Series Preface -- Preface to Volume 4: Power Systems Protective Relaying -- Author -- 1. Modern Protective Relaying: An Overview -- 1.1 Design Aspects and Reliability -- 1.2 Fundamental Power System Knowledge -- 1.3 Design Criteria of Protective Systems -- 1.3.1 Selectivity -- 1.3.2 Speed -- 1.3.3 Reliability -- 1.4 Equipment and System Protection -- 1.5 Unit Protection Systems -- 1.5.1 Back-Up Protection -- 1.6 Smart Grids -- 1.6.1 Framework for the Smart Grids -- 1.6.2 Fundamental Layer -- 1.6.2.1 Foundational Infrastructure and Resources -- 1.6.2.2 Organization and Process -- 1.6.2.3 Standards and Models -- 1.6.2.4 Business and Regulatory -- 1.6.3 Enabling Layer -- 1.6.3.1 Enabling Infrastructure -- 1.6.3.2 Incremental Intelligence -- 1.6.4 Application Layer -- 1.6.4.1 Grid and Customer Analysis -- 1.6.4.2 Real-Time Awareness and Control -- 1.6.4.3 Customer Interaction -- 1.6.5 Innovation Layer -- 1.6.5.1 Research and Development -- 1.6.5.2 Research and Demonstration Projects -- 1.7 Load Profiles: Var-Volt Control -- 1.8 Some Modern Technologies Leading to Smart Grids -- 1.8.1 WAMSs and PMUs -- 1.8.2 System Integrity Protection Schemes -- 1.8.3 Adaptive Protection -- 1.9 Cyber Security -- 1.10 NERC and CIP Requirements -- References -- 2. Protective Relays -- 2.1 Classification of Relay Types -- 2.1.1 Input -- 2.1.2 Operating Principle -- 2.1.3 Performance -- 2.1.4 Construction -- 2.2 Electromechanical Relays -- 2.3 Overcurrent Relays -- 2.3.1 ANSI Curves -- 2.3.2 IEC Curves -- 2.4 Differential Relays -- 2.4.1 Overcurrent Differential Protection -- 2.4.2 Partial Differential Schemes -- 2.4.3 Overlapping the Zones of Protection -- 2.4.4 Percent Differential Relays -- 2.5 Pilot Wire Protection -- 2.6 Directional Overcurrent Relays -- 2.7 Voltage Relays -- 2.8 Reclosing Relays.
2.9 Breaker Failure Relay -- 2.10 Machine Field Ground Fault Relay -- 2.11 Frequency Relays -- 2.12 Distance Relays -- 2.13 Other Relay Types -- References -- 3. Instrument Transformers -- 3.1 Accuracy Classification of CTs -- 3.1.1 Metering Accuracies -- 3.1.2 Relaying Accuracies -- 3.1.3 Relaying Accuracy Classic fi ation X -- 3.1.4 Accuracy Classic fi ation T -- 3.2 Constructional Features of CTs -- 3.3 Secondary Terminal Voltage Rating -- 3.3.1 Saturation Voltage -- 3.3.2 Saturation Factor -- 3.4 CT Ratio and Phase Angle Errors -- 3.5 Interrelation of CT Ratio and Class C Accuracy -- 3.6 Polarity of Instrument Transformers -- 3.7 Application Considerations -- 3.8 Series and Parallel Connections of CTs -- 3.9 Transient Performance of the CTs -- 3.9.1 CT Saturation Calculations -- 3.9.2 Effect of Remanence -- 3.10 Practicality of CT Applications -- 3.11 CTs for Low-Resistance Grounded Medium-Voltage Systems -- 3.12 Future Directions in CT Applications -- 3.13 Voltage Transformers -- 3.13.1 Rated Primary Voltage and Ratios -- 3.13.2 Accuracy Rating -- 3.13.3 Thermal Burdens -- 3.13.4 PT Connections -- 3.13.5 Ferroresonance Damping -- 3.14 C apacitor-Coupled Voltage Transformers -- 3.14.1 Transient Performance -- 3.14.2 Applications to Distance Relay Protection -- 3.15 L ine (Wave) Traps -- 3.16 Transducers -- References -- 4. Microprocessor-Based Multifunction Relays -- 4.1 Functionality -- 4.1.1 Protection Features -- 4.1.2 Voltage-Based Protections -- 4.1.3 Monitoring Features -- 4.1.4 Communications and Controls -- 4.2 Front Panel -- 4.3 Environmental Compatibility -- 4.4 Dimensions -- 4.5 Specicfiations -- 4.6 Settings -- 4.6.1 The Setting Groups -- 4.7 Relay Bit Words -- 4.8 Time Delay Overcurrent Protection -- 4.9 Voltage-Based Elements -- 4.10 Power Elements -- 4.11 Loss of Potential -- 4.12 Frequency Settings -- 4.13 Trip and Close Logic.
4.13.1 Trip Logic -- 4.13.2 Close Logic -- 4.13.3 Reclose Logic and Supervision -- 4.14 Demand Metering -- 4.15 Logical Settings -- 4.16 Latch Bits: Nonvolatile State -- 4.17 Global Settings -- 4.18 Port Settings -- 4.19 Breaker Monitor -- 4.20 Front Panel Operations -- 4.20.1 Rotating Display -- 4.21 Analyzing Events -- 4.21.1 Sequential Event Recorder -- 4.21.2 Triggering -- 4.21.3 Aliases -- 4.22 Setting the Relay -- Reference -- 5. Current Interruption Devices and Battery Systems -- 5.1 High-Voltage Circuit Breakers -- 5.1.1 DC Control Schematics -- 5.2 Battery Systems -- 5.2.1 Battery Types -- 5.2.2 Plante Batteries -- 5.2.3 Pasted Plate Batteries -- 5.2.4 Tubular Plate Batteries -- 5.2.5 Sealed (Valve-Regulated) Lead Acid Batteries -- 5.2.6 Battery Monitoring System -- 5.2.7 Nickel-Cadmium Batteries -- 5.2.8 Pocket Plate Nickel-Cadmium Batteries -- 5.3 Sizing the Batteries -- 5.3.1 Standards for Sizing the Batteries -- 5.3.2 System Configurations for Batteries -- 5.3.3 Automatic Transfer Switches -- 5.3.4 Battery Chargers -- 5.3.4.1 Floating Operation -- 5.3.4.2 Equalizing Charge -- 5.3.4.3 Switch Mode Operation -- 5.3.5 Battery Charger as a Battery Eliminator -- 5.3.6 Short-Circuit and Coordination Considerations -- 5.4 Capacitive Trip Devices -- 5.5 Lockout Relays -- 5.6 Remote Trips -- 5.7 CT and PT Test Switches -- 5.8 Fuses -- 5.8.1 Medium-Voltage Fuses -- 5.8.1.1 Variations in the Fuse Time-Current Characteristics -- 5.8.2 Selection of Fuse Types and Ratings -- 5.8.3 Semiconductor Fuses -- 5.9 Low-Voltage Circuit Breakers -- 5.9.1 Molded Case Circuit Breakers -- 5.9.2 Current-Limiting MCCBs -- 5.9.3 Insulated Case Circuit Breakers -- 5.9.4 Low-Voltage Power Circuit Breakers -- 5.9.5 Short-Time Bands of LVPCBs' Trip Programmers -- 5.9.6 Motor Circuit Protectors -- 5.9.7 Other Pertinent Data of Low-Voltage Circuit Breakers.
5.10 Selective Zone Interlocking -- 5.11 Electronic Power Fuses -- 5.12 Low- and Medium-Voltage Contactors -- References -- 6. Overcurrent Protection: Ideal and Practical -- 6.1 Fundamental Considerations -- 6.2 Data for the Coordination Study -- 6.3 Computer-Based Coordination -- 6.4 Initial Analysis -- 6.5 Coordinating Time Interval -- 6.5.1 Relay Overtravel -- 6.6 Fundamental Considerations for Coordination -- 6.6.1 Settings on Bends of Coordination Curves -- 6.7 Some Examples of Coordination -- 6.7.1 Low-Voltage Distribution System -- 6.7.2 2.4 kV Distribution -- 6.7.3 Ground Fault Protection -- 6.7.4 Coordination in a Cogeneration System -- 6.8 Coordination on Instantaneous Basis -- 6.8.1 Selectivity between Two Series-Connected Current-Limiting Fuses -- 6.8.2 Selectivity of a Current-Limiting Fuse Downstream of Noncurrent-Limiting Circuit Breaker -- 6.8.3 Selectivity of Current-Limiting Devices in Series -- 6.9 NEC Requirements of Selectivity -- 6.9.1 Fully Selective Systems -- 6.9.2 Selection of Equipment Ratings and Trip Devices -- 6.10 The Art of Compromise -- 6.11 Zone Selective Interlocking -- 6.12 Protection and Coordination of UPS Systems -- References -- 7. System Grounding -- 7.1 Study of Grounding Systems -- 7.2 Solidly Grounded Systems -- 7.2.1 Hazards in Solidly Grounded Systems -- 7.3 Low-Resistance Grounded Systems -- 7.4 High-Resistance Grounded Systems -- 7.5 Ungrounded Systems -- 7.6 Reactance Grounding -- 7.7 Resonant Grounding -- 7.8 Corner of Delta Grounded Systems -- 7.9 Artificially Derived Neutrals -- 7.10 Multiple Grounded Systems -- 7.10.1 Equivalent Circuit of Multiple Grounded Systems -- 7.11 NEC and NESC Requirements -- 7.12 Hybrid Grounding System for Industrial Bus-Connected Generators -- 7.13 Grounding of ASDs -- 7.14 Grounding in Mine Installations -- References -- 8. Ground Fault Protection.
8.1 Protection and Coordination in Solidly Grounded Systems -- 8.1.1 NEC Requirements -- 8.1.2 Self-Extinguishing Ground Faults -- 8.1.3 Improving Coordination in Solidly Grounded Low-Voltage Systems -- 8.2 Ground Fault Coordination in Low-Resistance Grounded Medium-Voltage Systems -- 8.3 Remote Tripping -- 8.4 Ground Fault Protection in Ungrounded Systems -- 8.4.1 Nondiscriminatory Alarms and Trips -- 8.5 Ground Fault Protection in High-Resistance Grounded Systems -- 8.5.1 Nondiscriminatory Alarms and Trips -- 8.5.2 Selective Ground Fault Clearance -- 8.5.3 Pulsing-Type Ground Fault Detection System -- 8.5.4 Protection of Motors -- 8.5.5 Protection against Second Ground Fault -- 8.5.6 Insulation Stresses and Cable Selection for HR Grounded Systems -- 8.6 Ground Fault Protection in Resonant Grounded Systems -- 8.7 Studies of Protection and Coordination in Practical Systems -- 8.7.1 Ground Fault Protection of Industrial Bus-Connected Generators -- 8.7.2 Directional Ground Fault Relays -- 8.7.3 Operating Logic Selection for Directional Elements -- 8.7.3.1 Single-Line-to-Ground Fault -- 8.7.3.2 Double-Line-to-Ground Fault -- 8.8 Selective High-Resistance Grounding Systems -- 8.8.1 EMTP Simulation of a HRG -- 8.8.2 Generator 100% Stator Winding Protection -- 8.8.3 Accuracy of Low Pickup Settings in MMPR -- 8.9 Monitoring of Grounding Resistors -- References -- 9. Bus-Bar Protection and Autotransfer of Loads -- 9.1 Bus Faults -- 9.2 Bus Differential Relays -- 9.2.1 Low-Voltage Bus Bars -- 9.3 High-Impedance Differential Relays -- 9.3.1 Sensitivity for Internal Faults -- 9.3.2 High-Impedance MMPRs -- 9.3.3 Open-Circuited CT -- 9.4 Low-Impedance Current Differential Relays -- 9.4.1 CT Saturation -- 9.4.2 Dynamic Bus Replica -- 9.4.3 The Differential Settings -- 9.4.4 Comparison with High-Impedance Relays -- 9.5 Direction Comparison Bus Protection.
9.6 Bus Protection Using Linear Couplers.
The book focuses on protective relaying, an indispensable part of electrical power systems, and explores cybersecurity and instrument transformers. The text covers smart grids, integration of wind and solar generation, microgrids, and MMPRs (microprocessor-based multifunction relays)--the driving aspects of innovations in protective relaying.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.