ORPP logo
Image from Google Jackets

On Operads, Bimodules and Analytic Functors.

By: Contributor(s): Material type: TextTextSeries: Memoirs of the American Mathematical SocietyPublisher: Providence : American Mathematical Society, 2017Copyright date: ©2017Edition: 1st edDescription: 1 online resource (122 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470441357
Subject(s): Genre/Form: Additional physical formats: Print version:: On Operads, Bimodules and Analytic FunctorsDDC classification:
  • 512.62
LOC classification:
  • QA169 .G363 2017
Online resources:
Contents:
Cover -- Title page -- Introduction -- Chapter 1. Background -- 1.1. Review of bicategory theory -- 1.2. \catV-categories and presentable \catV-categories -- 1.3. Distributors -- Chapter 2. Monoidal distributors -- 2.1. Monoidal \catV-categories and \catV-rigs -- 2.2. Monoidal distributors -- 2.3. Symmetric monoidal \catV-categories and symmetric \catV-rigs -- 2.4. Symmetric monoidal distributors -- Chapter 3. Symmetric sequences -- 3.1. Free symmetric monoidal \catV-categories -- 3.2. -distributors -- 3.3. Symmetric sequences and analytic functors -- 3.4. Cartesian closure of categorical symmetric sequences -- Chapter 4. The bicategory of operad bimodules -- 4.1. Monads, modules and bimodules -- 4.2. Tame bicategories and bicategories of bimodules -- 4.3. Monad morphisms and bimodules -- 4.4. Tameness of bicategories of symmetric sequences -- 4.5. Analytic functors -- Chapter 5. Cartesian closure of operad bimodules -- 5.1. Cartesian closed bicategories of bimodules -- 5.2. Monad theory in tame bicategories -- 5.3. Monad theory in bicategories of bimodules -- 5.4. Bicategories of bimodules as Eilenberg-Moore completions -- Appendix A. A compendium of bicategorical definitions -- Appendix B. A technical proof -- B.1. Preliminaries -- B.2. The proof -- Bibliography -- Back Cover.
Summary: The authors develop further the theory of operads and analytic functors. In particular, they introduce the bicategory \operatorname{OpdBim}_{\mathcal{V}} of operad bimodules, that has operads as 0-cells, operad bimodules as 1-cells and operad bimodule maps as 2-cells, and prove that it is cartesian closed. In order to obtain this result, the authors extend the theory of distributors and the formal theory of monads.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title page -- Introduction -- Chapter 1. Background -- 1.1. Review of bicategory theory -- 1.2. \catV-categories and presentable \catV-categories -- 1.3. Distributors -- Chapter 2. Monoidal distributors -- 2.1. Monoidal \catV-categories and \catV-rigs -- 2.2. Monoidal distributors -- 2.3. Symmetric monoidal \catV-categories and symmetric \catV-rigs -- 2.4. Symmetric monoidal distributors -- Chapter 3. Symmetric sequences -- 3.1. Free symmetric monoidal \catV-categories -- 3.2. -distributors -- 3.3. Symmetric sequences and analytic functors -- 3.4. Cartesian closure of categorical symmetric sequences -- Chapter 4. The bicategory of operad bimodules -- 4.1. Monads, modules and bimodules -- 4.2. Tame bicategories and bicategories of bimodules -- 4.3. Monad morphisms and bimodules -- 4.4. Tameness of bicategories of symmetric sequences -- 4.5. Analytic functors -- Chapter 5. Cartesian closure of operad bimodules -- 5.1. Cartesian closed bicategories of bimodules -- 5.2. Monad theory in tame bicategories -- 5.3. Monad theory in bicategories of bimodules -- 5.4. Bicategories of bimodules as Eilenberg-Moore completions -- Appendix A. A compendium of bicategorical definitions -- Appendix B. A technical proof -- B.1. Preliminaries -- B.2. The proof -- Bibliography -- Back Cover.

The authors develop further the theory of operads and analytic functors. In particular, they introduce the bicategory \operatorname{OpdBim}_{\mathcal{V}} of operad bimodules, that has operads as 0-cells, operad bimodules as 1-cells and operad bimodule maps as 2-cells, and prove that it is cartesian closed. In order to obtain this result, the authors extend the theory of distributors and the formal theory of monads.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.