ORPP logo
Image from Google Jackets

Hypercontractivity in Group von Neumann Algebras.

By: Contributor(s): Material type: TextTextSeries: Memoirs of the American Mathematical SocietyPublisher: Providence : American Mathematical Society, 2017Copyright date: ©2017Edition: 1st edDescription: 1 online resource (102 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470441333
Subject(s): Genre/Form: Additional physical formats: Print version:: Hypercontractivity in Group von Neumann AlgebrasDDC classification:
  • 512.556
LOC classification:
  • QA326 .H974 2017
Online resources:
Contents:
Cover -- Title page -- Introduction -- Chapter 1. The combinatorial method -- 1.1. Notation -- 1.2. Aim of the method -- 1.3. Admissible lengths -- 1.4. Completing squares I -- 1.5. A decomposition of ᵤ( ) -- 1.6. Completing squares II -- 1.7. Analysis of both approaches -- 1.8. Λ-estimates -- 1.9. Δ-estimates -- 1.10. Strategy -- Chapter 2. Optimal time estimates -- 2.1. Free groups -- 2.2. Triangular groups -- 2.3. Finite cyclic groups -- 2.4. Comments -- Chapter 3. Poisson-like lengths -- 3.1. Proof of Theorem B -- 3.2. Behavior of the constant (\G, ) -- 3.3. Examples of Poisson-like lengths -- 3.4. Ultracontractivity -- Appendix A. Logarithmic Sobolev inequalities -- Appendix B. The word length in ℤ_{ } -- Appendix C. Numerical analysis -- C.1. Estimates for free groups -- C.2. Estimates for triangular groups -- C.3. Estimates for finite cyclic groups -- Appendix D. Technical inequalities -- D.0. Positivity test for polynomials -- D.1. Technical inequalities for free groups -- D.2. Technical inequalities for triangular groups -- D.3. Technical inequalities for finite cyclic groups -- D.4. Proofs -- Bibliography -- Back Cover.
Summary: In this paper, the authors provide a combinatorial/numerical method to establish new hypercontractivity estimates in group von Neumann algebras. They illustrate their method with free groups, triangular groups and finite cyclic groups, for which they obtain optimal time hypercontractive L_2 \to L_q inequalities with respect to the Markov process given by the word length and with q an even integer. Interpolation and differentiation also yield general L_p \to L_q hypercontrativity for 1.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title page -- Introduction -- Chapter 1. The combinatorial method -- 1.1. Notation -- 1.2. Aim of the method -- 1.3. Admissible lengths -- 1.4. Completing squares I -- 1.5. A decomposition of ᵤ( ) -- 1.6. Completing squares II -- 1.7. Analysis of both approaches -- 1.8. Λ-estimates -- 1.9. Δ-estimates -- 1.10. Strategy -- Chapter 2. Optimal time estimates -- 2.1. Free groups -- 2.2. Triangular groups -- 2.3. Finite cyclic groups -- 2.4. Comments -- Chapter 3. Poisson-like lengths -- 3.1. Proof of Theorem B -- 3.2. Behavior of the constant (\G, ) -- 3.3. Examples of Poisson-like lengths -- 3.4. Ultracontractivity -- Appendix A. Logarithmic Sobolev inequalities -- Appendix B. The word length in ℤ_{ } -- Appendix C. Numerical analysis -- C.1. Estimates for free groups -- C.2. Estimates for triangular groups -- C.3. Estimates for finite cyclic groups -- Appendix D. Technical inequalities -- D.0. Positivity test for polynomials -- D.1. Technical inequalities for free groups -- D.2. Technical inequalities for triangular groups -- D.3. Technical inequalities for finite cyclic groups -- D.4. Proofs -- Bibliography -- Back Cover.

In this paper, the authors provide a combinatorial/numerical method to establish new hypercontractivity estimates in group von Neumann algebras. They illustrate their method with free groups, triangular groups and finite cyclic groups, for which they obtain optimal time hypercontractive L_2 \to L_q inequalities with respect to the Markov process given by the word length and with q an even integer. Interpolation and differentiation also yield general L_p \to L_q hypercontrativity for 1.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.