UHV Transmission Technology.
Material type:
- text
- computer
- online resource
- 9780128052808
- 621.3190951
- TK3001 .U38 2018
Front Cover -- UHV Transmission Technology -- Copyright Page -- Contents -- Preface -- About Us -- I. AC -- 1 General -- 1.1 Overview of UHV AC Transmission Development -- 1.1.1 Classification of Voltage Levels -- 1.1.2 Overview of International UHV AC Transmission Development -- 1.1.2.1 United States -- 1.1.2.2 The Former Soviet Union -- 1.1.2.3 Japan -- 1.1.2.4 Italy -- 1.1.2.5 Canada -- 1.1.3 History of HV AC Transmission Development in China -- 1.2 Development Necessity for a UHV AC Grid in China -- 1.2.1 Objective Requirements for Establishing a New Energy Supply System -- 1.2.2 Objective Requirements for the Coordinated Development of an Electric Power Industry -- 1.2.3 Advantages of UHV Transmission -- 1.2.4 Economy of UHV Transmission -- 1.2.4.1 Economy of UHV Transmission Technology -- 1.2.4.2 Economy of the UHV Grid -- 1.2.4.3 Calculation of Economic Benefits -- 1.2.4.4 Input/Output Analysis -- 1.2.4.5 Analysis of Competitiveness of Transmission Price -- 1.2.4.6 Economy of the UHV AC Pilot and Demonstration Project -- 1.2.4.7 Analysis of Competitiveness of the Transmission Price -- 1.2.4.8 Financial Capability Analysis -- 1.2.5 Objective Requirements for Developing the Equipment Manufacturing Industry -- 1.2.6 Objective Requirements for Promoting Independent Innovation -- 1.3 Determination of the Rated Voltage and Maximum Operating Voltage of the UHV AC Grid -- 1.3.1 General -- 1.3.2 Determination of Rated Voltage and Maximum Operating Voltage of the UHV AC Grid in China -- 1.4 Construction and Prospects of UHV AC Grids in China -- 1.4.1 Construction of a UHV AC Pilot and Demonstration Project in China -- 1.4.1.1 Project Selection -- 1.4.1.2 System Operating Conditions -- 1.4.1.3 Project Construction Conditions -- 1.4.1.4 Conformity With Technical Demands of the Pilot and Demonstration Project -- 1.4.1.5 Risk Assessment.
1.4.2 Conclusion -- 1.4.3 Engineering Design -- 1.4.4 Insulation Level of UHV Equipment -- 1.4.5 Commissioning and Operation -- 1.4.5.1 System Commissioning -- 1.4.5.2 System Operation -- 1.4.6 Construction of the UHV Test Base and Simulation Center in China -- 1.4.6.1 UHV AC Test Base -- 1.4.6.2 UHV Tower Test Base -- 1.4.6.3 Tibet High-Altitude Test Base -- 1.4.6.4 Construction of the SGCC Simulation Center -- 1.4.7 Planning and Prospects for UHV AC Grids in China -- 2 UHV AC Grid and System Stability -- 2.1 Construction of a UHV Synchronous Power Grid -- 2.1.1 Development Trends and Experiences with Synchronous Power Grids in Foreign Countries -- 2.1.1.1 Overview of the Main Grid Interconnections -- 2.1.1.2 Experiences and Development Trends -- 2.1.2 Development of the Power Grid in China -- 2.1.3 Technology Development Roadmap of China's AC Synchronous Grid -- 2.1.4 Key Technical Issues of Construction of the UHV Synchronous Grid in China -- 2.1.4.1 Functions of AC and DC Transmission -- 2.1.4.2 Functions of Different Voltage Levels of Grids -- 2.1.4.3 Connecting the East China Grid to the North China-Central China UHV Synchronous Grid -- 2.1.4.4 Asynchronous Interconnection between the Northeast Power Grid and the North China-Central China Synchronous Grid th... -- 2.1.4.5 Asynchronous Interconnection Between the Northwest China Grid and the North China-Central China Synchronous Grid Th... -- 2.1.5 Construction Scheme of China's UHV Synchronous Grid -- 2.2 Security of a UHV Synchronous Grid -- 2.2.1 Lessons Learned From Blackouts of Large Power Grids in Foreign Countries -- 2.2.2 Security Strategies for Synchronous Grids -- 2.2.3 Security and Stability Criteria of China's Grid -- 2.2.4 Security of China's UHV Power Grids -- 2.3 Security Analysis on the UHV Pilot and Demonstration Project -- 2.3.1 Stability Analysis.
2.3.2 Reactive Compensation and Voltage Control -- 2.3.2.1 Reactive Power Characteristics of a UHV Transmission and Transformation System -- 2.3.2.2 Reactive Compensation Measurements for a UHV Transmission and Transformation System -- 2.3.2.3 Reactive Power Compensation and Voltage Control of a UHV AC Pilot and Demonstration Project -- 3 UHV AC System Overvoltage and Insulation Coordination -- 3.1 Power Frequency Overvoltage and Suppression Measures -- 3.1.1 Main Causes of Power Frequency Overvoltage -- 3.1.2 Suppression Measures for Power Frequency Overvoltage -- 3.1.3 Use Conventional High-Voltage Shunt Reactors to Suppress Power Frequency Overvoltage -- 3.1.4 Use of Controllable High-Voltage Shunt Reactors to Suppress Power Frequency Overvoltage -- 3.1.5 Duration of Power Frequency Overvoltage due to Three-Phase Load Rejection During a Single Phase to Ground Fault -- 3.2 Secondary Arc Current and Recovery Voltage -- 3.2.1 Secondary Arc Current and its Suppression Measures -- 3.2.2 Secondary Arc Current and Recovery Voltage of UHV and EHV Power Transmission Systems -- 3.2.3 Impact of a Series Compensation Device on Transient Secondary Arc Current -- 3.3 Switching Overvoltage and Suppression Measures -- 3.3.1 Main Measures to Suppress the Switching Overvoltage of the UHV System -- 3.3.2 Closing Overvoltage of a UHV System -- 3.3.3 Opening (Load Rejection) Switching Overvoltage -- 3.4 Very Fast Transient Overvoltage (VFTO) -- 3.4.1 Study Method for VFTO in UHV Substations -- 3.4.2 VFTO in GIS Substations During Switching of the Disconnector Without Switching the Resistor -- 3.4.3 Using a GIS Disconnector Fitted with a Switching Resistor to Suppress VFTO -- 3.4.4 Parameters of Switching Resistors for the Disconnector -- 3.4.5 VFTO in HGIS Substations -- 3.4.6 VFTO on the Transformer Side -- 3.5 Lightning Overvoltage and Protection.
3.5.1 Lightning Overvoltage of UHV AC Power Transmission Lines and Protection Against It -- 3.5.1.1 Operational Experience With AC Power Transmission Lines -- 3.5.1.2 Calculation Method of Lightning Performance -- 3.5.1.3 Lightning Protection of the UHV AC Power Transmission Line -- 3.5.2 Lightning Overvoltage of UHV Substations and Protection -- 3.5.2.1 Direct Lightning Strike Shielding -- 3.5.2.2 Lightning Intruding Overvoltage Protection of UHV Substations -- 3.5.3 Examples of Calculating Lightning Trip-Out Rates of UHV AC Power Transmission Lines -- 3.5.3.1 Lightning Trip-Out rate of UHV single-circuit lines -- 3.5.3.2 MTBF of a Large Crossing of the UHV Single-Circuit Line -- 3.5.3.3 Lightning Trip-Out Rate of the UHV Double-Circuit Line -- 3.5.3.4 Examples of Calculating the Lightning Withstand Rate of UHV AC Power Transmission Lines -- 3.6 Insulation Coordination -- 3.6.1 General -- 3.6.2 Principles and Methods of Insulation Coordination -- 3.6.3 Selection of Air Gap on Overhead Power Transmission Line Tower -- 3.6.4 Selection of Air Gaps in a UHV Substation -- 3.6.5 Insulation Coordination and Insulation Level of UHV Electrical Equipment -- 4 External Insulation Characteristics of UHV AC Power Transmission Lines -- 4.1 Power Frequency Voltage Discharge Characteristics -- 4.2 Switching Impulse Discharge Characteristics -- 4.2.1 Effect of Wavefront Time -- 4.2.2 Effect of Gap Size -- 4.2.3 Effect of Gap Structure -- 4.2.4 Study on Air Gaps of Substations -- 4.2.5 Test on Phase-to-Phase Gap -- 4.3 Lightning Impulse Discharge Characteristics -- 4.4 Altitude Correction -- 4.5 Study on the Pollution Flashover Characteristics of an Insulator -- 4.5.1 Selection of Insulators for UHV AC Lines under Different Pollution Conditions and Altitudes -- 4.5.1.1 Overview.
4.5.1.2 Test on Pollution Flashover Characteristics of Insulators for a UHV AC Transmission Line -- 4.5.2 Analysis of Factors Bearing Up on the Pollution Flashover Characteristics of Insulators -- 4.5.2.1 Types of Salts -- 4.5.3 Nonsoluble Deposit Density (NSDD) -- 4.5.4 Uneven Distribution of Pollution on the Top and Bottom Surfaces of Insulators -- 4.5.5 Insulation Configuration Recommended for a 1000-kV UHV AC Line -- 4.5.5.1 Analytical Method for Insulation Configuration -- 4.5.5.2 Relation Between Number of Insulators in a String and Pollution Flashover Voltage -- 4.5.5.3 Determination of Number of Insulators for a 1000-kV Transmission Line with the Pollution Withstand Method -- 5 UHVAC Substation and Main Electrical Equipment -- 5.1 Main Electrical Connection of UHVAC Substations -- 5.1.1 Common Main Electrical Connection Modes -- 5.1.2 Main Electrical Connection of UHV Substations -- 5.1.3 Selection of Switchgears (AIS, HGIS, and GIS) -- 5.2 UHVAC Transformers -- 5.3 UHVAC Reactors (Including Controllable HV Shunt Reactors) -- 5.4 UHVAC Switchgears -- 5.4.1 Basic Requirements -- 5.4.2 Structures and Characteristics -- 5.4.3 Grounding Grid and Interphase Circulating Current of UHV GIS/HGIS -- 5.4.4 Test of UHV Switchgears -- 5.5 UHVAC Surge Arresters -- 5.5.1 Overview -- 5.5.2 Main Performance Parameters -- 5.5.3 Porcelain Type Surge Arresters -- 5.5.4 Tank Type Surge Arresters for GIS -- 5.6 UHVAC Bushings -- 5.6.1 UHV Transformer Bushings -- 5.6.2 UHV GIS Bushings -- 5.6.2.1 Main Technical Parameters -- 5.6.2.2 Structure and Design Considerations -- 5.7 UHVAC Transformers -- 5.7.1 UHV Voltage Transformers -- 5.7.2 UHV Current Transformers -- 5.8 LV Reactive Power Compensation Equipment -- 5.8.1 Configuration Principles -- 5.8.2 Selection of Neutral Point Grounding Mode -- 5.8.3 Selection of Equipment Insulation Level.
5.8.4 Circuit Breakers for Switching Capacitor Banks.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.