Microbiology in Dairy Processing : Challenges and Opportunities.
Material type:
- text
- computer
- online resource
- 9781119114970
- 579.37
- QR121
Intro -- Title Page -- Copyright Page -- Contents -- List of contributors -- Foreword -- Preface -- Acknowledgements -- Chapter 1 Milk fat components and milk quality -- 1.1 INTRODUCTION -- 1.1.1 Milk fat globules -- 1.1.2 Milk fat and fatty acid composition -- 1.2 CONCLUSIONS -- References -- Chapter 2 Spore-forming bacteria in dairy products -- 2.1 INTRODUCTION -- 2.2 THE BACTERIAL SPORE -- 2.2.1 Structure and chemical composition of bacterial spores -- 2.2.1.1 Exosporium -- 2.2.1.2 Spore coat -- 2.2.1.3 Outer spore membrane -- 2.2.1.4 Cortex and germ cell wall -- 2.2.1.5 Inner spore membrane -- 2.2.1.6 The core spore -- 2.2.2 Spore resistance -- 2.2.3 Life cycle of spore‐forming bacteria -- 2.3 SPORE-FORMING BACTERIA IMPORTANT FOR THE DAIRY INDUSTRY -- 2.3.1 Class Bacilli -- 2.3.1.1 Bacillus genus -- 2.3.1.2 Geobacillus and Anoxybacillus genera -- 2.3.1.3 Paenibacillus genus -- 2.3.2 Class Clostridia -- 2.3.2.1 Clostridium botulinum -- 2.3.2.2 Clostridium perfringens -- 2.3.2.3 Clostridium tyrobutyricum and related species -- 2.4 CONTROL STRATEGIES TO PREVENT POISONING AND SPOILAGE OF MILK AND DAIRY PRODUCTS BY SPORE-FORMING BACTERIA -- 2.5 CONCLUSIONS -- References -- Chapter 3 Psychrotrophic bacteria -- 3.1 INTRODUCTION -- 3.2 SOURCES OF PSYCHROTROPHIC BACTERIA CONTAMINATION OF MILK -- 3.3 IMPORTANT SPOILAGE PSYCHROTROPHIC BACTERIA IN MILK -- 3.4 MOLECULAR TOOLS TO CHARACTERIZE PSYCHROTROPHIC BACTERIA -- 3.5 INFLUENCE OF PSYCHROTROPHIC CONTAMINATION OF RAW MILK ON DAIRY PRODUCT QUALITY -- 3.5.1 Bacterial proteases and proteolytic changes in milk -- 3.5.2 Bacterial lipases and phospholipases and their significance in milk -- 3.6 REGULATION OF EXTRACELLULAR ENZYMES -- 3.7 CONTROL OF PSYCHROTROPHIC BACTERIA AND RELATED ENZYMES -- 3.8 CONCLUSIONS -- References -- Chapter 4 Stabilization of milk quality by heat treatments -- 4.1 INTRODUCTION.
4.2 THERMAL TREATMENTS OF MILK -- 4.2.1 Thermization -- 4.2.2 Pasteurization -- 4.2.3 Grade A pasteurized milk -- 4.3 MILK STERILIZATION -- 4.3.1 Control of proper time/temperature setting for safety of milk and milk products -- 4.4 DISEASES ASSOCIATED WITH UNPASTEURIZED MILK, OR POST-PASTEURIZATION DAIRY-PROCESSING CONTAMINATION -- 4.5 CONCLUSIONS -- References -- Chapter 5 Genomics of LAB and dairy-associated species -- 5.1 INTRODUCTION -- 5.2 GENOMICS OF LAB AND DAIRY-ASSOCIATED SPECIES -- 5.2.1 Next‐generation sequencing of strains, dairy starter genomics and metagenomics -- 5.2.2 Pacific Bioscience single-molecule real-time sequencing technology -- 5.2.3 Illumina MySeq and HiSeq 2000 -- 5.2.4 Ion Torrent platform -- 5.3 NGS PLATFORM APPLIED TO SEQUENCING OF MICROBIAL COMMUNITIES -- 5.3.1 Pangenomics -- 5.3.2 Omic technologies: transcriptomics, proteomics, functional genomics, systems biology -- 5.4 METABOLOMICS AND PROTEOMICS -- 5.4.1 Subcellular localisation (SLC): secretion systems for secreted proteins -- 5.4.2 Interactome for cell adhesion and pathogen exclusion -- 5.4.3 LAB peptidome -- 5.5 COMPARATIVE GENOMICS OF DAIRY-ASSOCIATED BACTERIA: THE LACTOBACILLUS GENUS COMPLEX, STREPTOCOCCI/LACTOCOCCI, ENTEROCOCCI, PROPIONIBACTERIA AND BIFIDOBACTERIA -- 5.5.1 Comparative genomics of Lb. rhamnosus and Lb. casei -- 5.5.2 Lb. casei core genome and ecotype differences in dairy adapted strains -- 5.6 CLUSTERED REGULARLY Interspaced Short PALINDROMIC REPEATS (CRISPR) IN ADAPTIVE IMMUNITY -- 5.7 REGULATION IN CARBON METABOLISM -- 5.7.1 Transcriptional and posttranscriptional regulation in carbon metabolism -- 5.7.2 Two-component systems and phosphorylation in sugar substrate regulation -- 5.7.3 Regulatory RNAs and alternative sigma factors in gene expression -- 5.8 CONCLUSIONS -- References.
Chapter 6 Metabolism and biochemistry of LAB and dairy-associated species -- 6.1 INTRODUCTION -- 6.2 CARBOHYDRATE SUBSTRATES, GLYCOLYSIS AND ENERGY PRODUCTION -- 6.2.1 Pentose phosphate pathway -- 6.2.2 Citrate fermentation -- 6.3 PROTEOLYSIS, PROTEIN SUBSTRATES AND AMINO ACID AVAILABILITY INFLUENCING GENE EXPRESSION -- 6.3.1 Cell-envelope proteinases: the Prt system -- 6.3.2 Oligopeptide permeases and other transporters for peptides and amino acids -- 6.3.3 Peptidolysis and free amino acids -- 6.3.4 Peptidolysis and catabolite repression -- 6.3.5 Amino acid biosynthesis and auxotrophy -- 6.4 LIPOLYSIS, LIPASES, ESTERASES -- 6.5 AROMA AND FLAVOUR PRODUCTS OF METABOLISM -- 6.5.1 Aldehydes, alcohols and carboxylic acids -- 6.5.2 Amino acids as precursor flavour compounds -- 6.6 NONENZYMATIC PRODUCTION OF FLAVOURS -- 6.7 METHODS OF ANALYSIS OF FLAVOURS IN DAIRY PRODUCTS: HPLC, GAS CHROMATOGRAPHY/MASS ANALYSIS (GC/MS) -- 6.8 NATURAL BIODIVERSITY OF STRAINS IN DAIRY PRODUCTIONS -- 6.9 CONCLUSIONS -- References -- Chapter 7 Growth needs and culture media for LAB and dairy-associated species -- 7.1 INTRODUCTION -- 7.2 ESTABLISHED CULTURE MEDIA FOR LACTOBACILLI -- 7.2.1 Rogosa agar -- 7.2.2 MRS medium -- 7.2.3 Skim milk and whey agar -- 7.3 M17 MEDIUM FOR SELECTION AND ENUMERATION OF LACTOCOCCI AND STREPTOCOCCI -- 7.3.1 St. thermophilus agar -- 7.4 SELECTIVE MEDIA FOR LACTOBACILLI -- 7.4.1 MRS vancomycin -- 7.4.2 Additional selective agents -- 7.4.3 MRSV plus selective agents for Lb. casei group enumeration -- 7.4.4 MRS-salicin, MRS-sorbitol, MRS-ribose, MRS gluconate agar -- 7.4.5 MRS-clindamycin-ciprofloxacin agar -- 7.4.6 MMV medium for Lb. casei group enumeration -- 7.4.7 MRS containing fructose (MRSF) -- 7.4.8 mMRS-BPB -- 7.4.9 MRS-NNLP agar and chromogenic agars for complex communities -- 7.4.10 Homofermentative-heterofermentative differential medium.
7.5 MEDIA FOR THE ISOLATION OF BIFIDOBACTERIA -- 7.5.1 MRS-NNLP agar -- 7.5.2 BSM, WSP, TOS-MUP -- 7.5.3 MRS-ABC -- 7.6 PHENOTYPING -- 7.7 CONCLUSIONS -- References -- Chapter 8 LAB species and strain identification -- 8.1 INTRODUCTION -- 8.2 GENOTYPIC FINGERPRINTING METHODS -- 8.3 CULTURE-DEPENDENT APPROACHES -- 8.3.1 Random amplification of polymorphic DNA -- 8.3.2 ARDRA and RFLP -- 8.3.3 Ribotyping -- 8.3.4 Repetitive element sequence-based PCR -- 8.3.5 Amplified fragment length polymorphism -- 8.3.6 Pulsed field gel electrophoresis -- 8.4 NON-GENOTYPIC FINGERPRINTING METHODS -- 8.5 CULTURE-INDEPENDENT APPROACHES -- 8.5.1 Culture-independent methods for qualitative analysis of dairy foods microbiota -- 8.5.2 Culture-independent methods for quantitative analysis of dairy foods microbiota -- 8.6 NOVEL HIGH-THROUGHPUT TECHNIQUES: SEQUENCING AND METAGENOMICS -- 8.7 CONCLUSIONS -- References -- Chapter 9 LAB strains with bacteriocin synthesis genes and their applications -- 9.1 INTRODUCTION -- 9.2 BACTERIOCINS FROM LAB -- 9.3 POTENTIAL FOR USE OF LAB BACTERIOCINS AS FOOD PRESERVATIVES -- 9.4 BACTERIOCINS PRODUCED BY DAIRY LAB -- 9.5 IDENTIFICATION OF LAB-PRODUCING BACTERIOCINS -- 9.6 A NOVEL APPROACH FOR SCREENING LAB BACTERIOCINS -- 9.7 BIOTECHNOLOGICAL INTERVENTIONS FOR BACTERIOCIN ENGINEERING -- 9.8 CONCLUSIONS -- References -- Chapter 10 Starter strains and adjunct non-starter lactic acid bacteria (NSLAB) in dairy products -- 10.1 INTRODUCTION -- 10.2 CONTROLLED FERMENTATION -- 10.2.1 Natural versus selected lactic acid bacteria starters -- 10.2.2 Starter strains: selection parameter approaches and strain concept -- 10.2.3 Starter culture formulation -- 10.3 ADJUNCT NON-STARTER LACTIC ACID BACTERIA -- 10.3.1 Biodiversity and adaptation to cheese environment -- 10.3.2 Prospective in industrial application.
10.3.3 Biopreservation and health benefits -- 10.4 CONCLUSIONS -- References -- Chapter 11 Milk fat: stability, separation and technological transformation -- 11.1 INTRODUCTION -- 11.1.1 Composition and physical state of milk fat -- 11.1.2 Melting point of milk fat -- 11.2 PHYSICAL INSTABILITY OF MILK FAT -- 11.3 MILK FAT SEPARATION -- 11.3.1 Flocculation or natural creaming -- 11.3.2 Milk fat separation by centrifugation -- 11.4 PARTIAL COALESCENCE -- 11.4.1 General aspects -- 11.4.2 Barrier against coalescence -- 11.4.2.1 Low molecular mass surfactants -- 11.4.2.2 Large sized surfactants (casein micelle) -- 11.4.2.3 Polymeric surfactants (proteins and polysaccharides) -- 11.4.2.4 Mixed films -- 11.5 FOAM IN MILK AND CREAM -- 11.5.1 General aspects -- 11.5.1.1 Foam formation without surfactants -- 11.5.1.2 Foam formation with surfactants -- 11.5.1.3 Drainage of dispersion liquid in foam -- 11.5.2 Foam from cream containing more than 30% milk fat -- 11.6 WHIPPED CREAM AND BUTTER -- 11.6.1 Technological factors affecting whipped cream and butter production -- 11.7 CHURNING PROCESS -- 11.7.1 Type of cream -- 11.7.2 Physical (crystallization) and biological maturation of cream before churning -- 11.7.3 Churning technology -- 11.7.4 Continuous churning -- 11.7.5 Moulding and packaging -- 11.8 CONCLUSIONS -- References -- Chapter 12 Biological traits of lactic acid bacteria: industrial relevance and new perspectives in dairy applications -- 12.1 INTRODUCTION -- 12.2 SELECTING FERMENTING BACTERIA FOR THEIR ABILITY TO HAVE A RESPIRATORY METABOLISM -- 12.3 SELECTING GALACTOSE-POSITIVE YOGURT CULTURES: WORKING "AGAINST THE NATURAL EVOLUTION OF THE SPECIES" -- 12.4 ACCELERATING THE MILK ACIDIFICATION PROCESS BY SELECTING PROTEINASE-POSITIVE STRAINS -- 12.5 ACCELERATING THE MILK ACIDIFICATION PROCESS BY SELECTING UREASE-NEGATIVE S. thermophilus STRAINS.
12.6 PROTECTIVE CULTURES FOR DAIRY APPLICATIONS: "WORK BUT PLEASE DO NOT GROW AND DO NOT MODIFY THE SENSORY PROFILE OF THE PRODUCT".
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.