ORPP logo
Image from Google Jackets

Thermoelectric Energy Conversion : Basic Concepts and Device Applications.

By: Contributor(s): Material type: TextTextSeries: Advanced Micro and Nanosystems SeriesPublisher: Newark : John Wiley & Sons, Incorporated, 2017Copyright date: ©2017Edition: 1st edDescription: 1 online resource (339 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783527698141
Subject(s): Genre/Form: Additional physical formats: Print version:: Thermoelectric Energy ConversionDDC classification:
  • 621.31243
LOC classification:
  • TK2950
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- About the Editors -- Series Editors' Preface -- List of Contributors -- Chapter 1 Utilizing Phase Separation Reactions for Enhancement of the Thermoelectric Efficiency in IV-VI Alloys -- 1.1 Introduction -- 1.2 IV-VI Alloys for Waste Heat Thermoelectric Applications -- 1.3 Thermodynamically Driven Phase Separation Reactions -- 1.4 Selected IV-VI Systems with Enhanced Thermoelectric Properties Following Phase Separation Reactions -- 1.5 Concluding Remarks -- References -- Chapter 2 Nanostructured Materials: Enhancing the Thermoelectric Performance -- 2.1 Introduction -- 2.2 Approaches for Improving ZT -- 2.3 Recent Progress in Developing Bulk Thermoelectric Materials -- 2.4 Bulk Nanostructured Thermoelectric Materials -- 2.4.1 Bi2Te3‐Based Nanocomposites -- 2.4.2 PbTe‐Based Nanostructured Materials -- 2.4.3 Half‐Heusler Alloys -- 2.4.4 Nanostructured Skutterudite Materials -- 2.4.5 Nanostructured Oxide Materials -- 2.4.5.1 p‐Type Oxides -- 2.4.5.2 n‐Type Oxides -- 2.5 Outlook and Challenges -- Acknowledgement -- References -- Chapter 3 Organic Thermoelectric Materials -- 3.1 Introduction -- 3.2 Seebeck Coefficient and Electronic Structure -- 3.3 Seebeck Coefficient and Charge Carrier Mobility -- 3.4 Optimization of the Figure of Merit -- 3.5 N‐Doping of Conjugated Polymers -- 3.6 Elastic Thermoelectric Polymers -- 3.7 Conclusions -- Acknowledgments -- References -- Chapter 4 Silicon for Thermoelectric Energy Harvesting Applications -- 4.1 Introduction -- 4.1.1 Silicon as a Thermoelectric Material -- 4.1.2 Current Uses of Silicon in TEGs -- 4.2 Bulk and Thin‐Film Silicon -- 4.2.1 Single‐Crystalline and Polycrystalline Silicon -- 4.2.2 Degenerate and Phase‐Segregated Silicon -- 4.3 Nanostructured Silicon: Physics of Nanowires and Nanolayers -- 4.3.1 Introduction.
4.3.2 Electrical Transport in Nanostructured Thermoelectric Materials -- 4.3.3 Phonon Transport in Nanostructured Thermoelectric Materials -- 4.4 Bottom‐Up Nanowires -- 4.4.1 Preparation Strategies -- 4.4.2 Chemical Vapor Deposition (CVD) -- 4.4.3 Molecular Beam Epitaxy (MBE) -- 4.4.4 Laser Ablation -- 4.4.5 Solution‐Based Techniques -- 4.4.6 Catalyst Materials -- 4.4.7 Catalyst Deposition Methods -- 4.5 Material Properties and Thermoelectric Efficiency -- 4.6 Top‐Down Nanowires -- 4.6.1 Preparation Strategies -- 4.6.2 Material Properties and Thermoelectric Efficiency -- 4.7 Applications of Bulk and Thin‐Film Silicon and SiGe Alloys to Energy Harvesting -- 4.8 Applications of Nanostructured Silicon to Energy Harvesting -- 4.8.1 Bottom‐Up Nanowires -- 4.8.2 Top‐Down Nanowires -- 4.9 Summary and Outlook -- Acknowledgments -- References -- Chapter 5 Techniques for Characterizing Thermoelectric Materials: Methods and the Challenge of Consistency -- 5.1 Introduction - Hitting the Target -- 5.2 Thermal Transport in Gases and Solid‐State Materials -- 5.3 The Combined Parameter ZT‐Value -- 5.3.1 Electrical Conductivity -- 5.3.2 Seebeck Coefficient -- 5.3.3 Thermal Conductivity -- 5.4 Summary -- Acknowledgments -- References -- Chapter 6 Preparation and Characterization of TE Interfaces/Junctions -- 6.1 Introduction -- 6.2 Effects of Electrical and Thermal Contact Resistances -- 6.3 Preparation of Thermoelectric Interfaces -- 6.4 Characterization of Contact Resistance Using Scanning Probe -- 6.5 Characterization of Thermal Contact Using Infrared Microscope -- 6.6 Summary -- Acknowledgments -- References -- Chapter 7 Thermoelectric Modules: Power Output, Efficiency, and Characterization -- 7.1 Introduction -- 7.1.1 Moving from Materials to a Device -- 7.1.2 Differences in Characterization -- 7.1.3 Chapter Summary -- 7.2 The Governing Equations.
7.2.1 Particle Fluxes and the Continuity Equation -- 7.2.2 Energy Fluxes and the Heat Equation -- 7.3 Power Output and Efficiency -- 7.3.1 Power Output -- 7.3.2 Efficiency -- 7.4 Characterization of Devices -- 7.4.1 Thermal Contacts -- 7.4.2 Additional Considerations -- 7.4.3 Constant Heat Input and Constant ΔT -- References -- Chapter 8 Integration of Heat Exchangers with Thermoelectric Modules -- 8.1 Introduction -- 8.2 Heat Exchanger Design - Consideration in TEG Systems -- 8.3 Cold Side Heat Exchanger for TEG Maximum Performance -- 8.4 Cooling Technologies and Design Challenges -- 8.5 Microchannel Heat Exchanger -- 8.6 Coupled and Comprehensive Simulation of TEG System -- 8.6.1 Governing Equations -- 8.6.2 Effect of Heat Exchanger Inlet/Outlet Plenums on TEG Temperature Distribution -- 8.6.3 Modified Channel Configuration -- 8.6.4 Flat‐Plate Heat Exchanger versus Cross‐Cut Heat Exchanger -- 8.6.5 Effect of Channel Hydraulic Diameter -- 8.7 Power-Efficiency Map -- 8.8 Section Design Optimization in TEG System -- 8.9 Conclusion -- Acknowledgment -- Nomenclature -- References -- Chapter 9 Power Electronic Converters and Their Control in Thermoelectric Applications -- 9.1 Introduction -- 9.2 Building Blocks of Power Electronics -- 9.3 Power Electronic Topologies -- 9.3.1 Buck Converter -- 9.3.1.1 On‐state -- 9.3.1.2 Off‐state -- 9.3.1.3 Averaging -- 9.3.2 Boost Converter -- 9.3.3 Non‐Inverting Buck Boost Converter -- 9.3.4 Flyback Converter -- 9.4 Electrical Equivalent Circuit Models for Thermoelectric Modules -- 9.5 Maximum Power Point Operation and Tracking -- 9.5.1 MPPT‐Methods -- 9.5.1.1 Perturb and Observe -- 9.5.1.2 Incremental Conductance -- 9.5.1.3 Fractional Open Circuit Voltage -- 9.6 Case Study -- 9.6.1 Specifications -- 9.6.2 Requirements -- 9.6.3 Design of Passive Components -- 9.6.4 Transfer Functions.
9.6.5 Design of Current Controller -- 9.6.6 MPPT Implementation -- 9.6.7 Design of Voltage Controller -- 9.7 Conclusion -- References -- Chapter 10 Thermoelectric Energy Harvesting for Powering Wearable Electronics -- 10.1 Introduction -- 10.2 Human Body as Heat Source for Wearable TEGs -- 10.3 TEG Design for Wearable Applications: Thermal and Electrical Considerations -- 10.4 Flexible TEGs: Deposition Methods and Thermal Flow Design Approach -- 10.4.1 Deposition Methods -- 10.4.1.1 Screen Printing -- 10.4.1.2 Inkjet Printing -- 10.4.1.3 Molding -- 10.4.1.4 Lithography -- 10.4.1.5 Vacuum Deposition Techniques -- 10.4.1.6 Thermal Evaporation -- 10.4.1.7 Sputtering -- 10.4.1.8 Molecular Beam Epitaxy (MBE) -- 10.4.1.9 Metal Organic Chemical Vapor Deposition (MOCVD) -- 10.4.1.10 Electrochemical Deposition -- 10.4.1.11 Vapor-Liquid-Solid (VLS) Growth -- 10.4.2 Heat Flow Direction Design Approach in Wearable TEG -- 10.5 TEG Integration in Wearable Devices -- 10.6 Strategies for Performance Enhancements and Organic Materials -- 10.6.1 Organic Thermoelectric Materials -- References -- Chapter 11 Thermoelectric Modules as Efficient Heat Flux Sensors -- 11.1 Introduction -- 11.1.1 Applications of Heat Flux Sensors -- 11.1.2 Units of Heat Flux and Characteristics of Sensors -- 11.1.3 Modern Heat Flux Sensors -- 11.1.4 Thermoelectric Heat Flux Sensors -- 11.2 Applications of Thermoelectric Modules -- 11.3 Parameters of Thermoelectric Heat Flux Sensors -- 11.3.1 Integral Sensitivity Sa -- 11.3.2 Sensitivity Se -- 11.3.3 Thermal Resistance RT -- 11.3.4 Noise Level -- 11.3.5 Sensitivity Threshold -- 11.3.6 Noise‐Equivalent Power NEP -- 11.3.7 Detectivity D* -- 11.3.8 Time Constant τ -- 11.4 Self‐Calibration Method of Thermoelectric Heat Flux Sensors -- 11.4.1 Sensitivity -- 11.4.1.1 Method -- 11.4.1.2 Examples -- 11.4.2 Values of NEP and D*.
11.5 Sensor Performance and Thermoelectric Module Design -- 11.5.1 Dependence on Physical Properties -- 11.5.2 Design Parameters -- 11.6 Features of Thermoelectric Heat Flux Sensor Design -- 11.7 Optimization of Sensors Design -- 11.7.1 Properties of Thermoelectric Material -- 11.7.2 Parameters of Thermoelectric Module -- 11.7.2.1 Pellets Form‐Factor -- 11.7.2.2 Thermoelement Height -- 11.7.2.3 Dimensions of Sensors -- 11.7.2.4 Pellets Number -- 11.7.3 Features of Real Design -- 11.8 Experimental Family of Heat Flux Sensors -- 11.8.1 HTX - Heat Flux and Temperature Sensors (HT - Heat Flux and Temperature) -- 11.8.2 HFX - Heat Flux Sensors without Temperature (HF - Heat Flux) -- 11.8.3 HRX‐IR Radiation Heat Flux Sensors (HR - Heat Flux Radiation) -- 11.9 Investigation of Sensors Performance -- 11.9.1 General Provisions -- 11.9.2 Calibration of Sensor Sensitivity -- 11.9.3 Sensitivity Temperature Dependence -- 11.9.4 Thermal Resistance -- 11.9.5 Typical Temperature Dependence of the Seebeck Coefficient -- 11.9.6 Conclusions -- 11.10 Heat Flux Sensors at the Market -- 11.11 Examples of Applications -- 11.11.1 Microcalorimetry: Evaporation of Water Drop -- 11.11.2 Measurement of Heat Fluxes in Soil -- 11.11.3 Thermoelectric Ice Sensor -- 11.11.4 Laser Power Meters -- References -- Further Reading -- Chapter 12 Photovoltaic-Thermoelectric Hybrid Energy Conversion -- 12.1 Background and Theory -- 12.1.1 Introduction -- 12.1.2 PV Efficiency -- 12.1.3 TEG Efficiency -- 12.1.4 PVTE Module Generated Power and Efficiency -- 12.1.5 Energy Loss -- 12.1.6 Cost -- 12.1.7 Overall Feasibility -- 12.2 Different Forms of PVTE Hybrid Systems: The State of the Art -- 12.2.1 PVTE Hybrid Systems Based on Dye‐Sensitized Solar Cell (DSSC) -- 12.2.2 Dye‐Sensitized Solar Cell with Built‐in Nanoscale Bi2Te3 TEG -- 12.2.3 PVTE Using Solar Concentrator.
12.2.4 Solar-Thermoelectric Device Based on Bi2Te3 and Carbon Nanotube Composites.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- About the Editors -- Series Editors' Preface -- List of Contributors -- Chapter 1 Utilizing Phase Separation Reactions for Enhancement of the Thermoelectric Efficiency in IV-VI Alloys -- 1.1 Introduction -- 1.2 IV-VI Alloys for Waste Heat Thermoelectric Applications -- 1.3 Thermodynamically Driven Phase Separation Reactions -- 1.4 Selected IV-VI Systems with Enhanced Thermoelectric Properties Following Phase Separation Reactions -- 1.5 Concluding Remarks -- References -- Chapter 2 Nanostructured Materials: Enhancing the Thermoelectric Performance -- 2.1 Introduction -- 2.2 Approaches for Improving ZT -- 2.3 Recent Progress in Developing Bulk Thermoelectric Materials -- 2.4 Bulk Nanostructured Thermoelectric Materials -- 2.4.1 Bi2Te3‐Based Nanocomposites -- 2.4.2 PbTe‐Based Nanostructured Materials -- 2.4.3 Half‐Heusler Alloys -- 2.4.4 Nanostructured Skutterudite Materials -- 2.4.5 Nanostructured Oxide Materials -- 2.4.5.1 p‐Type Oxides -- 2.4.5.2 n‐Type Oxides -- 2.5 Outlook and Challenges -- Acknowledgement -- References -- Chapter 3 Organic Thermoelectric Materials -- 3.1 Introduction -- 3.2 Seebeck Coefficient and Electronic Structure -- 3.3 Seebeck Coefficient and Charge Carrier Mobility -- 3.4 Optimization of the Figure of Merit -- 3.5 N‐Doping of Conjugated Polymers -- 3.6 Elastic Thermoelectric Polymers -- 3.7 Conclusions -- Acknowledgments -- References -- Chapter 4 Silicon for Thermoelectric Energy Harvesting Applications -- 4.1 Introduction -- 4.1.1 Silicon as a Thermoelectric Material -- 4.1.2 Current Uses of Silicon in TEGs -- 4.2 Bulk and Thin‐Film Silicon -- 4.2.1 Single‐Crystalline and Polycrystalline Silicon -- 4.2.2 Degenerate and Phase‐Segregated Silicon -- 4.3 Nanostructured Silicon: Physics of Nanowires and Nanolayers -- 4.3.1 Introduction.

4.3.2 Electrical Transport in Nanostructured Thermoelectric Materials -- 4.3.3 Phonon Transport in Nanostructured Thermoelectric Materials -- 4.4 Bottom‐Up Nanowires -- 4.4.1 Preparation Strategies -- 4.4.2 Chemical Vapor Deposition (CVD) -- 4.4.3 Molecular Beam Epitaxy (MBE) -- 4.4.4 Laser Ablation -- 4.4.5 Solution‐Based Techniques -- 4.4.6 Catalyst Materials -- 4.4.7 Catalyst Deposition Methods -- 4.5 Material Properties and Thermoelectric Efficiency -- 4.6 Top‐Down Nanowires -- 4.6.1 Preparation Strategies -- 4.6.2 Material Properties and Thermoelectric Efficiency -- 4.7 Applications of Bulk and Thin‐Film Silicon and SiGe Alloys to Energy Harvesting -- 4.8 Applications of Nanostructured Silicon to Energy Harvesting -- 4.8.1 Bottom‐Up Nanowires -- 4.8.2 Top‐Down Nanowires -- 4.9 Summary and Outlook -- Acknowledgments -- References -- Chapter 5 Techniques for Characterizing Thermoelectric Materials: Methods and the Challenge of Consistency -- 5.1 Introduction - Hitting the Target -- 5.2 Thermal Transport in Gases and Solid‐State Materials -- 5.3 The Combined Parameter ZT‐Value -- 5.3.1 Electrical Conductivity -- 5.3.2 Seebeck Coefficient -- 5.3.3 Thermal Conductivity -- 5.4 Summary -- Acknowledgments -- References -- Chapter 6 Preparation and Characterization of TE Interfaces/Junctions -- 6.1 Introduction -- 6.2 Effects of Electrical and Thermal Contact Resistances -- 6.3 Preparation of Thermoelectric Interfaces -- 6.4 Characterization of Contact Resistance Using Scanning Probe -- 6.5 Characterization of Thermal Contact Using Infrared Microscope -- 6.6 Summary -- Acknowledgments -- References -- Chapter 7 Thermoelectric Modules: Power Output, Efficiency, and Characterization -- 7.1 Introduction -- 7.1.1 Moving from Materials to a Device -- 7.1.2 Differences in Characterization -- 7.1.3 Chapter Summary -- 7.2 The Governing Equations.

7.2.1 Particle Fluxes and the Continuity Equation -- 7.2.2 Energy Fluxes and the Heat Equation -- 7.3 Power Output and Efficiency -- 7.3.1 Power Output -- 7.3.2 Efficiency -- 7.4 Characterization of Devices -- 7.4.1 Thermal Contacts -- 7.4.2 Additional Considerations -- 7.4.3 Constant Heat Input and Constant ΔT -- References -- Chapter 8 Integration of Heat Exchangers with Thermoelectric Modules -- 8.1 Introduction -- 8.2 Heat Exchanger Design - Consideration in TEG Systems -- 8.3 Cold Side Heat Exchanger for TEG Maximum Performance -- 8.4 Cooling Technologies and Design Challenges -- 8.5 Microchannel Heat Exchanger -- 8.6 Coupled and Comprehensive Simulation of TEG System -- 8.6.1 Governing Equations -- 8.6.2 Effect of Heat Exchanger Inlet/Outlet Plenums on TEG Temperature Distribution -- 8.6.3 Modified Channel Configuration -- 8.6.4 Flat‐Plate Heat Exchanger versus Cross‐Cut Heat Exchanger -- 8.6.5 Effect of Channel Hydraulic Diameter -- 8.7 Power-Efficiency Map -- 8.8 Section Design Optimization in TEG System -- 8.9 Conclusion -- Acknowledgment -- Nomenclature -- References -- Chapter 9 Power Electronic Converters and Their Control in Thermoelectric Applications -- 9.1 Introduction -- 9.2 Building Blocks of Power Electronics -- 9.3 Power Electronic Topologies -- 9.3.1 Buck Converter -- 9.3.1.1 On‐state -- 9.3.1.2 Off‐state -- 9.3.1.3 Averaging -- 9.3.2 Boost Converter -- 9.3.3 Non‐Inverting Buck Boost Converter -- 9.3.4 Flyback Converter -- 9.4 Electrical Equivalent Circuit Models for Thermoelectric Modules -- 9.5 Maximum Power Point Operation and Tracking -- 9.5.1 MPPT‐Methods -- 9.5.1.1 Perturb and Observe -- 9.5.1.2 Incremental Conductance -- 9.5.1.3 Fractional Open Circuit Voltage -- 9.6 Case Study -- 9.6.1 Specifications -- 9.6.2 Requirements -- 9.6.3 Design of Passive Components -- 9.6.4 Transfer Functions.

9.6.5 Design of Current Controller -- 9.6.6 MPPT Implementation -- 9.6.7 Design of Voltage Controller -- 9.7 Conclusion -- References -- Chapter 10 Thermoelectric Energy Harvesting for Powering Wearable Electronics -- 10.1 Introduction -- 10.2 Human Body as Heat Source for Wearable TEGs -- 10.3 TEG Design for Wearable Applications: Thermal and Electrical Considerations -- 10.4 Flexible TEGs: Deposition Methods and Thermal Flow Design Approach -- 10.4.1 Deposition Methods -- 10.4.1.1 Screen Printing -- 10.4.1.2 Inkjet Printing -- 10.4.1.3 Molding -- 10.4.1.4 Lithography -- 10.4.1.5 Vacuum Deposition Techniques -- 10.4.1.6 Thermal Evaporation -- 10.4.1.7 Sputtering -- 10.4.1.8 Molecular Beam Epitaxy (MBE) -- 10.4.1.9 Metal Organic Chemical Vapor Deposition (MOCVD) -- 10.4.1.10 Electrochemical Deposition -- 10.4.1.11 Vapor-Liquid-Solid (VLS) Growth -- 10.4.2 Heat Flow Direction Design Approach in Wearable TEG -- 10.5 TEG Integration in Wearable Devices -- 10.6 Strategies for Performance Enhancements and Organic Materials -- 10.6.1 Organic Thermoelectric Materials -- References -- Chapter 11 Thermoelectric Modules as Efficient Heat Flux Sensors -- 11.1 Introduction -- 11.1.1 Applications of Heat Flux Sensors -- 11.1.2 Units of Heat Flux and Characteristics of Sensors -- 11.1.3 Modern Heat Flux Sensors -- 11.1.4 Thermoelectric Heat Flux Sensors -- 11.2 Applications of Thermoelectric Modules -- 11.3 Parameters of Thermoelectric Heat Flux Sensors -- 11.3.1 Integral Sensitivity Sa -- 11.3.2 Sensitivity Se -- 11.3.3 Thermal Resistance RT -- 11.3.4 Noise Level -- 11.3.5 Sensitivity Threshold -- 11.3.6 Noise‐Equivalent Power NEP -- 11.3.7 Detectivity D* -- 11.3.8 Time Constant τ -- 11.4 Self‐Calibration Method of Thermoelectric Heat Flux Sensors -- 11.4.1 Sensitivity -- 11.4.1.1 Method -- 11.4.1.2 Examples -- 11.4.2 Values of NEP and D*.

11.5 Sensor Performance and Thermoelectric Module Design -- 11.5.1 Dependence on Physical Properties -- 11.5.2 Design Parameters -- 11.6 Features of Thermoelectric Heat Flux Sensor Design -- 11.7 Optimization of Sensors Design -- 11.7.1 Properties of Thermoelectric Material -- 11.7.2 Parameters of Thermoelectric Module -- 11.7.2.1 Pellets Form‐Factor -- 11.7.2.2 Thermoelement Height -- 11.7.2.3 Dimensions of Sensors -- 11.7.2.4 Pellets Number -- 11.7.3 Features of Real Design -- 11.8 Experimental Family of Heat Flux Sensors -- 11.8.1 HTX - Heat Flux and Temperature Sensors (HT - Heat Flux and Temperature) -- 11.8.2 HFX - Heat Flux Sensors without Temperature (HF - Heat Flux) -- 11.8.3 HRX‐IR Radiation Heat Flux Sensors (HR - Heat Flux Radiation) -- 11.9 Investigation of Sensors Performance -- 11.9.1 General Provisions -- 11.9.2 Calibration of Sensor Sensitivity -- 11.9.3 Sensitivity Temperature Dependence -- 11.9.4 Thermal Resistance -- 11.9.5 Typical Temperature Dependence of the Seebeck Coefficient -- 11.9.6 Conclusions -- 11.10 Heat Flux Sensors at the Market -- 11.11 Examples of Applications -- 11.11.1 Microcalorimetry: Evaporation of Water Drop -- 11.11.2 Measurement of Heat Fluxes in Soil -- 11.11.3 Thermoelectric Ice Sensor -- 11.11.4 Laser Power Meters -- References -- Further Reading -- Chapter 12 Photovoltaic-Thermoelectric Hybrid Energy Conversion -- 12.1 Background and Theory -- 12.1.1 Introduction -- 12.1.2 PV Efficiency -- 12.1.3 TEG Efficiency -- 12.1.4 PVTE Module Generated Power and Efficiency -- 12.1.5 Energy Loss -- 12.1.6 Cost -- 12.1.7 Overall Feasibility -- 12.2 Different Forms of PVTE Hybrid Systems: The State of the Art -- 12.2.1 PVTE Hybrid Systems Based on Dye‐Sensitized Solar Cell (DSSC) -- 12.2.2 Dye‐Sensitized Solar Cell with Built‐in Nanoscale Bi2Te3 TEG -- 12.2.3 PVTE Using Solar Concentrator.

12.2.4 Solar-Thermoelectric Device Based on Bi2Te3 and Carbon Nanotube Composites.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.