ORPP logo
Image from Google Jackets

Gas Hydrates 1 : Fundamentals, Characterization and Modeling.

By: Contributor(s): Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2017Copyright date: ©2018Edition: 1st edDescription: 1 online resource (307 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119427438
Subject(s): Genre/Form: Additional physical formats: Print version:: Gas Hydrates 1LOC classification:
  • TN884.G37 2017
Online resources:
Contents:
Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1. Neutron Scattering of Clathrate and Semiclathrate Hydrates -- 1.1. Introduction -- 1.2. Neutron scattering -- 1.2.1. A basic ideal scattering experiment -- 1.2.2. Neutron scattering theory -- 1.2.3. Correlation functions -- 1.2.4. Coherent and incoherent scattering -- 1.2.5. A simple example of scattering -- 1.3. Probing structural and dynamical properties of gas hydrates -- 1.3.1. Structures -- 1.3.2. Relaxation of guest molecules and water molecules -- 1.3.3. Excitations and vibrational density of states -- 1.4. Selected examples -- 1.4.1. Inhibition and formation mechanisms -- 1.4.2. Guest replacement in gas hydrates -- 1.4.3. Hydrogen: from its dynamics properties to its storage capabilities -- 1.4.4. Ionic clathrate hydrates and semiclathrates -- 1.5. Concluding remarks -- 1.6. Bibliography -- 2. Spectroscopy of Gas Hydrates: From Fundamental Aspects to Chemical Engineering, Geophysical and Astrophysical Applications -- 2.1. Introduction -- 2.2. Vibrational spectrum -- 2.2.1. Intramolecular modes -- 2.2.2. Intermolecular modes -- 2.3. Applications to the investigation of formation mechanism -- 2.3.1. Formation mechanism: nucleation and growth -- 2.3.2. The Raman contribution -- 2.3.3. Insights from IR spectroscopy -- 2.3.4. Formation mechanism: chemical engineering applications -- 2.4. NGHs: contribution of spectroscopy -- 2.5. Clathrate hydrates in astrophysical environments -- 2.5.1. IR spectroscopy of astrophysical ices -- 2.5.2. Interstellar ices -- 2.5.3. Solar system ices -- 2.5.4. Insights from laboratory spectroscopy -- 2.6. Concluding remarks -- 2.7. Bibliography -- 3. High-Resolution Optical Microscopy of Gas Hydrates -- 3.1. Introduction -- 3.2. Optical methods -- 3.2.1. Beyond bright-field modes in optical microscopy.
3.2.2. Brewster angle microscopy -- 3.3. Selected examples -- 3.3.1. Hydrate halos growing on glass substrates -- 3.3.2. Hydrate crystallization in a guest-in-water emulsion -- 3.3.3. Adsorption of kinetic hydrate inhibitors -- 3.4. Concluding remarks -- 3.5. Acknowledgments -- 3.6. Bibliography -- 4. Calorimetric Characterization of Clathrate and Semiclathrate Hydrates -- 4.1. Introduction -- 4.2. DTA and differential scanning calorimetry -- 4.2.1. Principles of DTA and DSC -- 4.2.2. Examples of pressure-controlled DTA and DSC devices for hydrate studies -- 4.2.3. Temperature calibration of DSC -- 4.3. Phase equilibrium determination in hydrate systems using pressure-controlled TDA and DSC -- 4.3.1. Proper exploitation of DSC thermograms -- 4.4. Measuring the heat of dissociation and heat capacity of gas hydrates -- 4.4.1. Quantitative in situ hydrate formation -- 4.4.2. Indirect enthalpy measurement and gas content evaluation -- 4.4.3. Heat capacity measurement -- 4.5. Measuring the kinetics of hydrate formation -- 4.6. Conclusion -- 4.7. Bibliography -- 5. Thermodynamic Modeling of Solid-Fluid Equilibria: From Pure Solid Phases to Gas Semiclathrate Hydrates -- 5.1. Introduction -- 5.2. Solid-fluid equilibrium between a fluid mixture and a pure solid phase -- 5.2.1. Solid-liquid equilibrium condition -- 5.2.2. SLE in the presence of electrolyte solutions -- 5.2.3. Solid-fluid equilibrium condition -- 5.3. Solid-liquid equilibrium between a liquid mixture and a solid solution -- 5.4. SLE between a liquid mixture and a solid compound -- 5.4.1. Solid-liquid equilibrium with salt hydrates -- 5.4.2. Solid-liquid equilibrium with semiclathrate hydrates -- 5.5. Thermodynamic model for gas semiclathrate hydrates -- 5.5.1. Paricaud's approach -- 5.5.2. The Eslamimanesh et al. model -- 5.6. Conclusion -- 5.7. Bibliography.
6. Volume and Non-Equilibrium Crystallization of Clathrate Hydrates -- 6.1. Introduction -- 6.2 Driving force and evidence for non-equilibrium gas hydrate crystallization -- 6.2.1. Driving force -- 6.2.2. Cage occupancy from equilibrium thermodynamics -- 6.3. Non-equilibrium hydrate formation? -- 6.3.1. Evidence from experimental studies -- 6.3.2. Clathrate hydrates in fluid inclusions -- 6.3.3. Evidence from molecular dynamics -- 6.3.4. Experimental and modeling issues -- 6.4. Modeling gas to hydrate transfer: equilibrium thermodynamics versus kinetics -- 6.5. Non-equilibrium flash calculations -- 6.5.1. Basics of flash calculations -- 6.5.2. Conventional flash approach for clathrate hydrates -- 6.5.3. Conclusions on standard flash approaches -- 6.5.4. Non-stoichiometric flash approaches -- 6.5.5. Discussion -- 6.6. A kinetic Langmuir based modeling approach -- 6.6.1. Introduction to the kinetic approach of mixed hydrates -- 6.6.2. Kinetic approach of enclathration -- 6.7. Conclusion -- 6.8. Nomenclature -- 6.8.1. Letters -- 6.8.2. Greek letters -- 6.8.3. Subscript -- 6.8.4. Superscript -- 6.9. Bibliography -- List of Authors -- Index -- Other titles from iSTE in Energy -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1. Neutron Scattering of Clathrate and Semiclathrate Hydrates -- 1.1. Introduction -- 1.2. Neutron scattering -- 1.2.1. A basic ideal scattering experiment -- 1.2.2. Neutron scattering theory -- 1.2.3. Correlation functions -- 1.2.4. Coherent and incoherent scattering -- 1.2.5. A simple example of scattering -- 1.3. Probing structural and dynamical properties of gas hydrates -- 1.3.1. Structures -- 1.3.2. Relaxation of guest molecules and water molecules -- 1.3.3. Excitations and vibrational density of states -- 1.4. Selected examples -- 1.4.1. Inhibition and formation mechanisms -- 1.4.2. Guest replacement in gas hydrates -- 1.4.3. Hydrogen: from its dynamics properties to its storage capabilities -- 1.4.4. Ionic clathrate hydrates and semiclathrates -- 1.5. Concluding remarks -- 1.6. Bibliography -- 2. Spectroscopy of Gas Hydrates: From Fundamental Aspects to Chemical Engineering, Geophysical and Astrophysical Applications -- 2.1. Introduction -- 2.2. Vibrational spectrum -- 2.2.1. Intramolecular modes -- 2.2.2. Intermolecular modes -- 2.3. Applications to the investigation of formation mechanism -- 2.3.1. Formation mechanism: nucleation and growth -- 2.3.2. The Raman contribution -- 2.3.3. Insights from IR spectroscopy -- 2.3.4. Formation mechanism: chemical engineering applications -- 2.4. NGHs: contribution of spectroscopy -- 2.5. Clathrate hydrates in astrophysical environments -- 2.5.1. IR spectroscopy of astrophysical ices -- 2.5.2. Interstellar ices -- 2.5.3. Solar system ices -- 2.5.4. Insights from laboratory spectroscopy -- 2.6. Concluding remarks -- 2.7. Bibliography -- 3. High-Resolution Optical Microscopy of Gas Hydrates -- 3.1. Introduction -- 3.2. Optical methods -- 3.2.1. Beyond bright-field modes in optical microscopy.

3.2.2. Brewster angle microscopy -- 3.3. Selected examples -- 3.3.1. Hydrate halos growing on glass substrates -- 3.3.2. Hydrate crystallization in a guest-in-water emulsion -- 3.3.3. Adsorption of kinetic hydrate inhibitors -- 3.4. Concluding remarks -- 3.5. Acknowledgments -- 3.6. Bibliography -- 4. Calorimetric Characterization of Clathrate and Semiclathrate Hydrates -- 4.1. Introduction -- 4.2. DTA and differential scanning calorimetry -- 4.2.1. Principles of DTA and DSC -- 4.2.2. Examples of pressure-controlled DTA and DSC devices for hydrate studies -- 4.2.3. Temperature calibration of DSC -- 4.3. Phase equilibrium determination in hydrate systems using pressure-controlled TDA and DSC -- 4.3.1. Proper exploitation of DSC thermograms -- 4.4. Measuring the heat of dissociation and heat capacity of gas hydrates -- 4.4.1. Quantitative in situ hydrate formation -- 4.4.2. Indirect enthalpy measurement and gas content evaluation -- 4.4.3. Heat capacity measurement -- 4.5. Measuring the kinetics of hydrate formation -- 4.6. Conclusion -- 4.7. Bibliography -- 5. Thermodynamic Modeling of Solid-Fluid Equilibria: From Pure Solid Phases to Gas Semiclathrate Hydrates -- 5.1. Introduction -- 5.2. Solid-fluid equilibrium between a fluid mixture and a pure solid phase -- 5.2.1. Solid-liquid equilibrium condition -- 5.2.2. SLE in the presence of electrolyte solutions -- 5.2.3. Solid-fluid equilibrium condition -- 5.3. Solid-liquid equilibrium between a liquid mixture and a solid solution -- 5.4. SLE between a liquid mixture and a solid compound -- 5.4.1. Solid-liquid equilibrium with salt hydrates -- 5.4.2. Solid-liquid equilibrium with semiclathrate hydrates -- 5.5. Thermodynamic model for gas semiclathrate hydrates -- 5.5.1. Paricaud's approach -- 5.5.2. The Eslamimanesh et al. model -- 5.6. Conclusion -- 5.7. Bibliography.

6. Volume and Non-Equilibrium Crystallization of Clathrate Hydrates -- 6.1. Introduction -- 6.2 Driving force and evidence for non-equilibrium gas hydrate crystallization -- 6.2.1. Driving force -- 6.2.2. Cage occupancy from equilibrium thermodynamics -- 6.3. Non-equilibrium hydrate formation? -- 6.3.1. Evidence from experimental studies -- 6.3.2. Clathrate hydrates in fluid inclusions -- 6.3.3. Evidence from molecular dynamics -- 6.3.4. Experimental and modeling issues -- 6.4. Modeling gas to hydrate transfer: equilibrium thermodynamics versus kinetics -- 6.5. Non-equilibrium flash calculations -- 6.5.1. Basics of flash calculations -- 6.5.2. Conventional flash approach for clathrate hydrates -- 6.5.3. Conclusions on standard flash approaches -- 6.5.4. Non-stoichiometric flash approaches -- 6.5.5. Discussion -- 6.6. A kinetic Langmuir based modeling approach -- 6.6.1. Introduction to the kinetic approach of mixed hydrates -- 6.6.2. Kinetic approach of enclathration -- 6.7. Conclusion -- 6.8. Nomenclature -- 6.8.1. Letters -- 6.8.2. Greek letters -- 6.8.3. Subscript -- 6.8.4. Superscript -- 6.9. Bibliography -- List of Authors -- Index -- Other titles from iSTE in Energy -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.