ORPP logo
Image from Google Jackets

Springer Handbook of Global Navigation Satellite Systems.

By: Contributor(s): Material type: TextTextSeries: Springer Handbooks SeriesPublisher: Cham : Springer International Publishing AG, 2017Copyright date: ©2017Edition: 1st edDescription: 1 online resource (1335 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319429281
Subject(s): Genre/Form: Additional physical formats: Print version:: Springer Handbook of Global Navigation Satellite SystemsDDC classification:
  • 623.893
LOC classification:
  • G70.212-.217
Online resources:
Contents:
Intro -- Foreword -- Preface -- About the Editors -- List of Authors -- Contents -- List of Abbreviations -- Part A Principles of GNSS -- 1 Introduction to GNSS -- 1.1 Early Satellite Navigation -- 1.2 Concept of GNSS Positioning -- 1.3 Modeling the Observations -- 1.4 Positioning Modes -- 1.5 Current and Developing GNSSs -- 1.6 GNSS for Science and Society at Large -- References -- 2 Time and Reference Systems -- 2.1 Time -- 2.2 Spatial Reference Systems -- 2.3 Terrestrial Reference System -- 2.4 Celestial Reference System -- 2.5 Transformations Between ICRF and ITRF -- 2.6 Perspectives -- References -- 3 Satellite Orbits and Attitude -- 3.1 Keplerian Motion -- 3.2 Orbit Perturbations -- 3.3 Broadcast Orbit Models -- 3.4 Attitude -- References -- 4 Signals and Modulation -- 4.1 Radiofrequency Signals -- 4.2 Spread Spectrum Technique and Pseudo Random Codes -- 4.3 Modulation Schemes -- 4.4 Signal Multiplexing -- 4.5 Navigation Data and Data-Free Channels -- References -- 5 Clocks -- 5.1 Frequency and Time Stability -- 5.2 Clock Technologies -- 5.3 Space-Qualified Atomic Standards -- 5.4 Relativistic Effects on Clocks -- 5.5 International Timescales -- 5.6 GNSS Timescales -- References -- 6 Atmospheric Signal Propagation -- 6.1 Electromagnetic Wave Propagation -- 6.2 Troposphere -- 6.3 Ionospheric Effects on GNSS Signal Propagation -- References -- Part B Satellite Navigation Systems -- 7 The Global Positioning System (GPS) -- 7.1 Space Segment -- 7.2 Control Segment -- 7.3 Navigation Signals -- 7.4 Navigation Data and Algorithms -- 7.5 Time System and Geodesy -- 7.6 Services and Performance -- References -- 8 GLONASS -- 8.1 Overview -- 8.2 Navigation Signals and Services -- 8.3 Satellites -- 8.4 Launch Vehicles -- 8.5 Ground Segment -- 8.6 GLONASS Open Service Performance -- References -- 9 Galileo -- 9.1 Constellation -- 9.2 Signals and Services.
9.3 Spacecraft -- 9.4 Ground Segment -- 9.5 Summary -- References -- 10 Chinese Navigation Satellite Systems -- 10.1 BeiDou Navigation Satellite Demonstration System (BDS-1) -- 10.2 BeiDou (Regional) NavigationSatellite System (BDS-2) -- 10.3 Performance of BDS-2 -- 10.4 BeiDou (Global) Navigation Satellite System -- 10.5 Brief Introduction of CAPS -- References -- 11 Regional Systems -- 11.1 Concept of Regional Navigation Satellite Systems -- 11.2 Quasi-Zenith Satellite System -- 11.3 Indian Regional Navigation Satellite System (IRNSS/NavIC) -- References -- 12 Satellite Based Augmentation Systems -- 12.1 Aircraft Guidance -- 12.2 GPS Error Sources -- 12.3 SBAS Architecture -- 12.4 SBAS Integrity -- 12.5 SBAS User Algorithms -- 12.6 Operational and Planned SBAS Systems -- 12.7 Evolution of SBAS -- References -- Part C GNSS Receivers and Antennas -- 13 Receiver Architecture -- 13.1 Background and History -- 13.2 Receiver Building Blocks -- 13.3 Multifrequency and Multisystem Receivers -- 13.4 Technology Trends -- 13.5 Receiver Types -- References -- 14 Signal Processing -- 14.1 Overview and Scope -- 14.2 Received Signal Model -- 14.3 Signal Search and Acquisition -- 14.4 Signal Tracking -- 14.5 Time Synchronization and Data Demodulation -- 14.6 GNSS Measurements -- 14.7 Advanced Topics -- References -- 15 Multipath -- 15.1 The Impact of Multipath -- 15.2 Characterizing the Multipath Environment -- 15.3 Multipath Signal Models -- 15.4 Pseudorange and Carrier-Phase Error -- 15.5 Multipath Error Envelopes -- 15.6 Temporal Error Variation, Bias Characteristicsand Fast Fading Considerations -- 15.7 Multipath Mitigation -- 15.8 Multipath Measurement -- 15.9 A Note About Multipath Impact on Doppler Measurements -- 15.10 Conclusions -- References -- 16 Interference -- 16.1 Analysis Technique for Statistically Independent Interference.
16.2 Canonical Interference Models -- 16.3 Quantization Effects -- 16.4 Specific Interference Waveformsand Sources -- 16.5 Spoofing -- 16.6 Interference Detection -- 16.7 Interference Mitigation -- References -- 17 Antennas -- 17.1 GNSS Antenna Characteristics -- 17.2 Basic GNSS Antenna Types -- 17.3 Application-Specific GNSS Antennas -- 17.4 Multipath Mitigation -- 17.5 Antennas for GNSS Satellites -- 17.6 Antenna Measurement and Calibration -- References -- 18 Simulators and Test Equipment -- 18.1 Background -- 18.2 RF-Level Simulators -- 18.3 IF-Level Simulators -- 18.4 Record and Playback Systems -- 18.5 Measurement-Level Simulators -- 18.6 Combining Liveand Simulated Data -- 18.7 Other Considerations -- 18.8 Summary -- References -- Part D GNSS Algorithms and Models -- 19 Basic Observation Equations -- 19.1 Observation Equations -- 19.2 Relativistic Effects -- 19.3 Atmospheric Signal Delays -- 19.4 Carrier-Phase Wind-Up -- 19.5 Antenna Phase-Center Offsetand Variations -- 19.6 Signal Biases -- 19.7 Receiver Noise and Multipath -- References -- 20 Combinations of Observations -- 20.1 Fundamental Equations -- 20.2 Combinations of Single-Satellite and Single-Receiver Observations -- 20.3 Combinations of Multisatellite and Multireceiver Observations -- 20.4 Pseudorange Filtering -- References -- 21 Positioning Model -- 21.1 Nonlinear Observation Equations -- 21.2 Linearization of the Observation Equations -- 21.3 Point Positioning Models -- 21.4 Relative Positioning Models -- 21.5 Differenced Positioning Models -- 21.6 The Positioning Concepts Related -- References -- 22 Least-Squares Estimation and Kalman Filtering -- 22.1 Linear Least-Squares Estimation -- 22.2 Optimal Estimation -- 22.3 Special Forms of Least Squares -- 22.4 Prediction and Filtering -- 22.5 Kalman Filtering -- References -- 23 Carrier Phase Integer Ambiguity Resolution.
23.1 GNSS Ambiguity Resolution -- 23.2 Rounding and Bootstrapping -- 23.3 Linear Combinations -- 23.4 Integer Least-Squares -- 23.5 Partial Ambiguity Resolution -- 23.6 When to Accept the Integer Solution? -- References -- 24 Batch and Recursive Model Validation -- 24.1 Modeling and Validation -- 24.2 Batch Model Validation -- 24.3 Testing for a Bias -- 24.4 Testing Procedure -- 24.5 Recursive Model Validation -- References -- Part E Positioning and Navigation -- 25 Precise Point Positioning -- 25.1 PPP Concept -- 25.2 Precise Positioning Correction Models -- 25.3 Specific Processing Aspects -- 25.4 Implementations -- 25.5 Examples -- 25.6 Discussion -- References -- 26 Differential Positioning -- 26.1 Differential GNSS: Concepts -- 26.2 Differential Navigation Services -- 26.3 Real-Time Kinematic Positioning -- 26.4 Network RTK -- References -- 27 Attitude Determination -- 27.1 Six Degrees of Freedom -- 27.2 Attitude Parameterization -- 27.3 Attitude Estimation from Baseline Observations -- 27.4 The GNSS Attitude Model -- 27.5 Applications -- 27.6 An Overview of GNSS/INS Sensor Fusion for Attitude Determination -- References -- 28 GNSS/INS Integration -- 28.1 State Estimation Objectives -- 28.2 Inertial Navigation -- 28.3 Inertial Sensors -- 28.4 Strapdown Inertial Navigation -- 28.5 Analysis of Error Effects -- 28.6 Aided Navigation -- 28.7 State Estimation -- 28.8 GNSS and Aided INS -- 28.9 Detailed Example -- 28.10 Alternative Estimation Methods -- 28.11 Looking Forward -- References -- 29 Land and Maritime Applications -- 29.1 Land-Based Applications of GNSS -- 29.2 Rail Applications -- 29.3 Maritime Applications -- 29.4 Outlook -- References -- 30 Aviation Applications -- 30.1 Overview -- 30.2 Standardising GNSS for Aviation -- 30.3 Evolution of the Flight Deck -- 30.4 From the RNP Concept to PBN -- 30.5 GNSS Performance Requirements.
30.6 Linking the PBN Requirements and the GNSS Requirements -- 30.7 Flight Planning and NOTAMs -- 30.8 Regulation and Certification -- 30.9 Military Aviation Applications -- 30.10 Other Aviation Applicationsof GNSS -- 30.11 Future Evolution -- References -- 31 Ground Based Augmentation Systems -- 31.1 Components -- 31.2 An Overview of Local Area Approaches -- 31.3 Ground-Based Augmentation Systems -- 31.4 Augmentation via Ranging Signals Pseudolites -- 31.5 Outlook -- References -- 32 Space Applications -- 32.1 Flying High -- 32.2 Spacecraft Navigation -- 32.3 Formation Flying and Rendezvous -- 32.4 Other Applications -- References -- Part F Surveying, Geodesy and Geodynamics -- 33 The International GNSS Service -- 33.1 Mission and Organization -- 33.2 Components -- 33.3 IGS Products -- 33.4 Pilot Projects and Experiments -- 33.5 Outlook -- References -- 34 Orbit and Clock Product Generation -- 34.1 Global Tracking Network -- 34.2 Models -- 34.3 POD Process -- 34.4 Estimation Strategies -- 34.5 Software -- 34.6 Products -- 34.7 Outlook -- References -- 35 Surveying -- 35.1 Precise Positioning Techniques -- 35.2 Geodetic and Land Surveying -- 35.3 Engineering Surveying -- 35.4 Hydrographic Surveying -- References -- 36 Geodesy -- 36.1 GNSS and IAG's Global Geodetic Observing System -- 36.2 Global and Regional Reference Frames -- 36.3 Earth Rotation, Polar Motion, and Nutation -- References -- 37 Geodynamics -- 37.1 GNSS for Geodynamics -- 37.2 History and Establishment of GNSS Networks for Geodynamics -- 37.3 Rigid Plate Motions -- 37.4 Plate Boundary Deformation and the Earthquake Cycle -- 37.5 Seismology -- 37.6 Volcano Deformation -- 37.7 Surface Loading Deformation -- 37.8 The Multi-GNSS Future -- References -- Part G GNSS Remote Sensing and Timing -- 38 Monitoring of the Neutral Atmosphere -- 38.1 Ground-Based Monitoringof the Neutral Atmosphere.
38.2 GNSS Radio OccultationMeasurements.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Foreword -- Preface -- About the Editors -- List of Authors -- Contents -- List of Abbreviations -- Part A Principles of GNSS -- 1 Introduction to GNSS -- 1.1 Early Satellite Navigation -- 1.2 Concept of GNSS Positioning -- 1.3 Modeling the Observations -- 1.4 Positioning Modes -- 1.5 Current and Developing GNSSs -- 1.6 GNSS for Science and Society at Large -- References -- 2 Time and Reference Systems -- 2.1 Time -- 2.2 Spatial Reference Systems -- 2.3 Terrestrial Reference System -- 2.4 Celestial Reference System -- 2.5 Transformations Between ICRF and ITRF -- 2.6 Perspectives -- References -- 3 Satellite Orbits and Attitude -- 3.1 Keplerian Motion -- 3.2 Orbit Perturbations -- 3.3 Broadcast Orbit Models -- 3.4 Attitude -- References -- 4 Signals and Modulation -- 4.1 Radiofrequency Signals -- 4.2 Spread Spectrum Technique and Pseudo Random Codes -- 4.3 Modulation Schemes -- 4.4 Signal Multiplexing -- 4.5 Navigation Data and Data-Free Channels -- References -- 5 Clocks -- 5.1 Frequency and Time Stability -- 5.2 Clock Technologies -- 5.3 Space-Qualified Atomic Standards -- 5.4 Relativistic Effects on Clocks -- 5.5 International Timescales -- 5.6 GNSS Timescales -- References -- 6 Atmospheric Signal Propagation -- 6.1 Electromagnetic Wave Propagation -- 6.2 Troposphere -- 6.3 Ionospheric Effects on GNSS Signal Propagation -- References -- Part B Satellite Navigation Systems -- 7 The Global Positioning System (GPS) -- 7.1 Space Segment -- 7.2 Control Segment -- 7.3 Navigation Signals -- 7.4 Navigation Data and Algorithms -- 7.5 Time System and Geodesy -- 7.6 Services and Performance -- References -- 8 GLONASS -- 8.1 Overview -- 8.2 Navigation Signals and Services -- 8.3 Satellites -- 8.4 Launch Vehicles -- 8.5 Ground Segment -- 8.6 GLONASS Open Service Performance -- References -- 9 Galileo -- 9.1 Constellation -- 9.2 Signals and Services.

9.3 Spacecraft -- 9.4 Ground Segment -- 9.5 Summary -- References -- 10 Chinese Navigation Satellite Systems -- 10.1 BeiDou Navigation Satellite Demonstration System (BDS-1) -- 10.2 BeiDou (Regional) NavigationSatellite System (BDS-2) -- 10.3 Performance of BDS-2 -- 10.4 BeiDou (Global) Navigation Satellite System -- 10.5 Brief Introduction of CAPS -- References -- 11 Regional Systems -- 11.1 Concept of Regional Navigation Satellite Systems -- 11.2 Quasi-Zenith Satellite System -- 11.3 Indian Regional Navigation Satellite System (IRNSS/NavIC) -- References -- 12 Satellite Based Augmentation Systems -- 12.1 Aircraft Guidance -- 12.2 GPS Error Sources -- 12.3 SBAS Architecture -- 12.4 SBAS Integrity -- 12.5 SBAS User Algorithms -- 12.6 Operational and Planned SBAS Systems -- 12.7 Evolution of SBAS -- References -- Part C GNSS Receivers and Antennas -- 13 Receiver Architecture -- 13.1 Background and History -- 13.2 Receiver Building Blocks -- 13.3 Multifrequency and Multisystem Receivers -- 13.4 Technology Trends -- 13.5 Receiver Types -- References -- 14 Signal Processing -- 14.1 Overview and Scope -- 14.2 Received Signal Model -- 14.3 Signal Search and Acquisition -- 14.4 Signal Tracking -- 14.5 Time Synchronization and Data Demodulation -- 14.6 GNSS Measurements -- 14.7 Advanced Topics -- References -- 15 Multipath -- 15.1 The Impact of Multipath -- 15.2 Characterizing the Multipath Environment -- 15.3 Multipath Signal Models -- 15.4 Pseudorange and Carrier-Phase Error -- 15.5 Multipath Error Envelopes -- 15.6 Temporal Error Variation, Bias Characteristicsand Fast Fading Considerations -- 15.7 Multipath Mitigation -- 15.8 Multipath Measurement -- 15.9 A Note About Multipath Impact on Doppler Measurements -- 15.10 Conclusions -- References -- 16 Interference -- 16.1 Analysis Technique for Statistically Independent Interference.

16.2 Canonical Interference Models -- 16.3 Quantization Effects -- 16.4 Specific Interference Waveformsand Sources -- 16.5 Spoofing -- 16.6 Interference Detection -- 16.7 Interference Mitigation -- References -- 17 Antennas -- 17.1 GNSS Antenna Characteristics -- 17.2 Basic GNSS Antenna Types -- 17.3 Application-Specific GNSS Antennas -- 17.4 Multipath Mitigation -- 17.5 Antennas for GNSS Satellites -- 17.6 Antenna Measurement and Calibration -- References -- 18 Simulators and Test Equipment -- 18.1 Background -- 18.2 RF-Level Simulators -- 18.3 IF-Level Simulators -- 18.4 Record and Playback Systems -- 18.5 Measurement-Level Simulators -- 18.6 Combining Liveand Simulated Data -- 18.7 Other Considerations -- 18.8 Summary -- References -- Part D GNSS Algorithms and Models -- 19 Basic Observation Equations -- 19.1 Observation Equations -- 19.2 Relativistic Effects -- 19.3 Atmospheric Signal Delays -- 19.4 Carrier-Phase Wind-Up -- 19.5 Antenna Phase-Center Offsetand Variations -- 19.6 Signal Biases -- 19.7 Receiver Noise and Multipath -- References -- 20 Combinations of Observations -- 20.1 Fundamental Equations -- 20.2 Combinations of Single-Satellite and Single-Receiver Observations -- 20.3 Combinations of Multisatellite and Multireceiver Observations -- 20.4 Pseudorange Filtering -- References -- 21 Positioning Model -- 21.1 Nonlinear Observation Equations -- 21.2 Linearization of the Observation Equations -- 21.3 Point Positioning Models -- 21.4 Relative Positioning Models -- 21.5 Differenced Positioning Models -- 21.6 The Positioning Concepts Related -- References -- 22 Least-Squares Estimation and Kalman Filtering -- 22.1 Linear Least-Squares Estimation -- 22.2 Optimal Estimation -- 22.3 Special Forms of Least Squares -- 22.4 Prediction and Filtering -- 22.5 Kalman Filtering -- References -- 23 Carrier Phase Integer Ambiguity Resolution.

23.1 GNSS Ambiguity Resolution -- 23.2 Rounding and Bootstrapping -- 23.3 Linear Combinations -- 23.4 Integer Least-Squares -- 23.5 Partial Ambiguity Resolution -- 23.6 When to Accept the Integer Solution? -- References -- 24 Batch and Recursive Model Validation -- 24.1 Modeling and Validation -- 24.2 Batch Model Validation -- 24.3 Testing for a Bias -- 24.4 Testing Procedure -- 24.5 Recursive Model Validation -- References -- Part E Positioning and Navigation -- 25 Precise Point Positioning -- 25.1 PPP Concept -- 25.2 Precise Positioning Correction Models -- 25.3 Specific Processing Aspects -- 25.4 Implementations -- 25.5 Examples -- 25.6 Discussion -- References -- 26 Differential Positioning -- 26.1 Differential GNSS: Concepts -- 26.2 Differential Navigation Services -- 26.3 Real-Time Kinematic Positioning -- 26.4 Network RTK -- References -- 27 Attitude Determination -- 27.1 Six Degrees of Freedom -- 27.2 Attitude Parameterization -- 27.3 Attitude Estimation from Baseline Observations -- 27.4 The GNSS Attitude Model -- 27.5 Applications -- 27.6 An Overview of GNSS/INS Sensor Fusion for Attitude Determination -- References -- 28 GNSS/INS Integration -- 28.1 State Estimation Objectives -- 28.2 Inertial Navigation -- 28.3 Inertial Sensors -- 28.4 Strapdown Inertial Navigation -- 28.5 Analysis of Error Effects -- 28.6 Aided Navigation -- 28.7 State Estimation -- 28.8 GNSS and Aided INS -- 28.9 Detailed Example -- 28.10 Alternative Estimation Methods -- 28.11 Looking Forward -- References -- 29 Land and Maritime Applications -- 29.1 Land-Based Applications of GNSS -- 29.2 Rail Applications -- 29.3 Maritime Applications -- 29.4 Outlook -- References -- 30 Aviation Applications -- 30.1 Overview -- 30.2 Standardising GNSS for Aviation -- 30.3 Evolution of the Flight Deck -- 30.4 From the RNP Concept to PBN -- 30.5 GNSS Performance Requirements.

30.6 Linking the PBN Requirements and the GNSS Requirements -- 30.7 Flight Planning and NOTAMs -- 30.8 Regulation and Certification -- 30.9 Military Aviation Applications -- 30.10 Other Aviation Applicationsof GNSS -- 30.11 Future Evolution -- References -- 31 Ground Based Augmentation Systems -- 31.1 Components -- 31.2 An Overview of Local Area Approaches -- 31.3 Ground-Based Augmentation Systems -- 31.4 Augmentation via Ranging Signals Pseudolites -- 31.5 Outlook -- References -- 32 Space Applications -- 32.1 Flying High -- 32.2 Spacecraft Navigation -- 32.3 Formation Flying and Rendezvous -- 32.4 Other Applications -- References -- Part F Surveying, Geodesy and Geodynamics -- 33 The International GNSS Service -- 33.1 Mission and Organization -- 33.2 Components -- 33.3 IGS Products -- 33.4 Pilot Projects and Experiments -- 33.5 Outlook -- References -- 34 Orbit and Clock Product Generation -- 34.1 Global Tracking Network -- 34.2 Models -- 34.3 POD Process -- 34.4 Estimation Strategies -- 34.5 Software -- 34.6 Products -- 34.7 Outlook -- References -- 35 Surveying -- 35.1 Precise Positioning Techniques -- 35.2 Geodetic and Land Surveying -- 35.3 Engineering Surveying -- 35.4 Hydrographic Surveying -- References -- 36 Geodesy -- 36.1 GNSS and IAG's Global Geodetic Observing System -- 36.2 Global and Regional Reference Frames -- 36.3 Earth Rotation, Polar Motion, and Nutation -- References -- 37 Geodynamics -- 37.1 GNSS for Geodynamics -- 37.2 History and Establishment of GNSS Networks for Geodynamics -- 37.3 Rigid Plate Motions -- 37.4 Plate Boundary Deformation and the Earthquake Cycle -- 37.5 Seismology -- 37.6 Volcano Deformation -- 37.7 Surface Loading Deformation -- 37.8 The Multi-GNSS Future -- References -- Part G GNSS Remote Sensing and Timing -- 38 Monitoring of the Neutral Atmosphere -- 38.1 Ground-Based Monitoringof the Neutral Atmosphere.

38.2 GNSS Radio OccultationMeasurements.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.