ORPP logo
Image from Google Jackets

Photomechanical Materials, Composites, and Systems : Wireless Transduction of Light into Work.

By: Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2017Copyright date: ©2017Edition: 1st edDescription: 1 online resource (447 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119123286
Subject(s): Genre/Form: Additional physical formats: Print version:: Photomechanical Materials, Composites, and SystemsDDC classification:
  • 620.1/9204295
LOC classification:
  • TA418.9.S62.P468 2017
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Chapter 1 A Historical Overview of Photomechanical Effects in Materials, Composites, and Systems -- 1.1 Introduction -- 1.1.1 Initial Studies of Photomechanical Effects in Materials -- 1.1.2 Research of Photomechanical Effects in Materials - 1950-1980 -- 1.1.3 Research of Photomechanical Effects in Materials - 1980-2000 -- 1.1.4 Photomechanical Effects Observed in Cross-Linked Liquid-Crystalline Polymers - 2001-Present -- 1.1.5 Photomechanical Effects in Polymeric Materials and Composites Systems since 2000 -- 1.1.6 Classification -- References -- Chapter 2 Photochromism in the Solid State -- 2.1 Molecular Photoswitches in the Solid State -- 2.2 Molecular and Macroscopic Motion of Azobenzene Chromophores -- 2.3 Photomechanical Effects -- 2.3.1 Photomechanical Effects in Amorphous Azo Polymers -- 2.3.2 Actuation in Liquid-Crystalline Polymers -- 2.3.3 Photosalient, Photochromic, and Photomechanical Crystals -- 2.4 Solid-State Photochromic Molecular Machines -- 2.4.1 Nanostructure Functionalization -- 2.4.2 Two-Dimensional Assemblies and Surface Functionalization -- 2.5 Surface Mass Transport and Phase Change Effects -- 2.6 Photochromic Reactions in Framework Architectures -- 2.7 Summary and Outlook -- References -- Chapter 3 Photomechanics: Bend, Curl, Topography, and Topology -- 3.1 The Photomechanics of Liquid-Crystalline Solids -- 3.2 Photomechanics and Its Mechanisms -- 3.2.1 Absorption, Photomechanics, and Bend Actuation -- 3.2.1.1 Photostationary Dye Populations and Mechanical Response -- 3.2.1.2 Dynamical Intensity and Dye Populations -- 3.2.1.3 Polydomain Photosolids -- 3.2.1.4 Photomechanics versus Thermal Mechanics upon Illuminating Photosolids -- 3.3 A Sketch of Macroscopic Mechanical Response in LC Rubbers and Glasses.
3.4 Photo- and Heat-Induced Topographical and Topological Changes -- 3.5 Continuous Director Variation, Part 1 -- 3.6 Mechanico-Geometric Effects, Part 1 -- 3.7 Continuous Director Variation, Part 2 -- 3.8 Continuous Director Variation, Part 3 -- 3.9 Mechanico-Geometric Effects, Part 2 -- 3.10 Director Fields with Discontinuities-Advanced Origami! -- 3.11 Mechanico-Geometric Consequences of Nonisometric Origami -- 3.12 Conclusions -- References -- Chapter 4 Photomechanical Effects in Amorphous and Semicrystalline Polymers -- 4.1 Introduction -- 4.2 Polymeric Materials -- 4.3 The Amorphous Polymer State -- 4.4 The Semicrystalline Polymer State -- 4.5 Absorption Processes -- 4.6 Photomechanical Effects in Amorphous and Semicrystalline Azobenzene-Functionalized Polymers -- 4.6.1 Influence of Crystallinity on Photomechanical Response of Polyimides -- 4.6.2 Backbone Rigidity -- 4.7 Molecular Alignment -- 4.8 Annealing and Aging -- 4.9 Sub-Tg Segmental Mobility -- 4.10 Cross-Link Density -- 4.11 Concluding Remarks -- References -- Chapter 5 Photomechanical Effects in Liquid-Crystalline Polymer Networks and Elastomers -- 5.1 Introduction -- 5.1.1 What Is a Liquid Crystal Polymer, Polymer Network, or Elastomer? -- 5.1.2 How Are Liquid-Crystalline Polymer Networks and Elastomers Prepared? -- 5.1.2.1 Polysiloxane Chemistries -- 5.1.2.2 Free Radical or Cationic Photopolymerization -- 5.2 Optically Responsive Liquid Crystal Polymer Networks -- 5.2.1 Historical Overview -- 5.2.2 Photochromic and Liquid Crystalline -- 5.2.3 Photomechanics -- 5.3 Literature Survey -- 5.3.1 Photomechanical Effects in Polysiloxane Materials and Analogs -- 5.3.2 Photomechanical Effects in Poly(meth)acrylate Materials and Analogs -- 5.4 Outlook and Conclusion -- References -- Chapter 6 Photomechanical Effects in Polymer Nanocomposites -- 6.1 Introduction.
6.2 Photomechanical Actuation in Polymer-Nanotube Composites -- 6.3 Fast Relaxation of Carbon Nanotubes in Polymer Composite Actuators -- 6.4 Highly Oriented Nanotubes for Photomechanical Response and Flexible Energy Conversion -- 6.4.1 Highly Oriented Nanotubes/Nanotube Liquid Crystals -- 6.4.2 Photomechanical Actuation of Oriented Nanotube Composites -- 6.4.3 Relaxation Behavior of Nanotube-Liquid Crystal Elastomers -- 6.5 Photomechanical Actuation Based on 2-D Nanomaterial (Graphene)-Polymer Composites -- 6.6 Applications of Photomechanical Actuation in Nanopositioning -- 6.6.1 Principle of GnP/Elastomer Photothermal Actuation -- 6.6.2 Photomechanical-Actuation-Based Nanopositioning System -- 6.6.3 GNP/PDMS Actuator Fabrication and Characterization -- 6.6.4 Nanopositioner System Integration -- 6.6.5 Kinetics of Photothermal Nanopositioners -- 6.6.6 Useful Displacement versus Maximum Displacement -- 6.6.7 Accuracy and Resolution -- 6.7 Future Outlook -- Acknowledgments -- References -- Chapter 7 Photomechanical Effects in Photochromic Crystals -- 7.1 Introduction -- 7.2 General Principles for Organic Photomechanical Materials -- 7.3 History and Background -- 7.4 Modes of Mechanical Action -- 7.4.1 Partial Reaction and Bimorph Formation -- 7.4.2 Complete Transformation and Crystal Reconfiguration -- 7.5 Photomechanical Molecular Crystal Systems -- 7.5.1 Intramolecular Photochemical Reactions -- 7.5.1.1 Ring-Opening/Closing Reactions -- 7.5.1.2 Photoisomerization -- 7.5.1.3 Photodissociation -- 7.5.2 Intermolecular Photochemical Reactions -- 7.5.2.1 [2 + 2] Photodimerization -- 7.5.2.2 [4 + 4] Photodimerization -- 7.5.3 Nonequilibrium Charge Distribution and Electronic Heating -- 7.6 Future Directions -- 7.6.1 Reaction Dynamics in Molecular Crystals -- 7.6.2 New Materials -- 7.6.3 Interfacing Molecular Crystals with Other Objects -- 7.7 Conclusion.
Acknowledgments -- References -- Chapter 8 Photomechanical Effects in Piezoelectric Ceramics -- 8.1 Introduction -- 8.2 Photovoltaic Effect -- 8.2.1 Principle of the Bulk Photovoltaic Effect -- 8.2.1.1 "Bulk" Photovoltaic Effect -- 8.2.1.2 Experimental Setup -- 8.2.1.3 Current Source Model -- 8.2.1.4 Voltage Source Model -- 8.2.2 Effect of Light Polarization Direction -- 8.2.3 PLZT Composition Research -- 8.2.4 Dopant Research -- 8.3 Photostrictive Effect -- 8.3.1 Figures of Merit -- 8.3.2 Materials Considerations -- 8.3.3 Ceramic Preparation Method Effect -- 8.3.3.1 Processing Method -- 8.3.3.2 Grain Size Effect -- 8.3.3.3 Surface/Geometry Dependence -- 8.4 Photostrictive Device Applications -- 8.4.1 Displacement Amplification Mechanism -- 8.4.2 Photo-Driven Relay -- 8.4.3 Micro-walking Machine -- 8.4.4 "Photophone -- 8.4.5 Micro-propelling Robot -- 8.5 Concluding Remarks -- References -- Chapter 9 Switching Surface Topographies Based on Liquid Crystal Network Coatings -- 9.1 Introduction -- 9.2 Liquid Crystal Networks -- 9.2.1 Photoresponsive Liquid Crystal Networks -- 9.2.2 Photoinduced Surface Deformation -- 9.2.3 Photoinduced Surface Deformation Preset by Patterned Director Orientation -- 9.2.4 On the Mechanism of Surface Deformation -- 9.3 Conclusions -- References -- Chapter 10 Photoinduced Shape Programming -- 10.1 One-Way Shape Memory -- 10.1.1 Photothermal -- 10.1.2 Photochemical -- 10.2 Two-Way Shape Memory -- 10.2.1 Photothermal -- 10.2.2 Photochemical -- 10.3 Summary and Outlook -- References -- Chapter 11 Photomechanical Effects to Enable Devices -- 11.1 Introduction -- 11.2 Analog Photomechanical Actuators -- 11.3 Discrete-State (Digital) Photomechanical Actuators -- 11.3.1 Binary Actuators -- 11.3.2 Latency of Binary Actuators and Repetitive Actuation -- 11.3.3 Multistable Implementations -- 11.3.4 Beyond Bistable, Buckled Rods.
11.4 Photomechanical Mechanisms and Machines -- References -- Chapter 12 Photomechanical Effects in Materials, Composites, and Systems: Outlook and Future Challenges -- 12.1 Introduction -- 12.2 Outlook and Challenges -- 12.2.1 Breadth and Depth -- 12.2.2 Beyond Bending: Mechanics Implementations -- 12.2.3 Harvesting and Harnessing Light -- 12.2.4 Speed is Limited -- 12.2.5 Systems Design and Implementation -- 12.2.6 Applications -- 12.2.6.1 Optical Elements -- 12.2.6.2 Morphing Shapes and Surfaces -- 12.2.6.3 Actuation -- 12.3 Conclusion -- References -- Index -- Supplemental Images -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Chapter 1 A Historical Overview of Photomechanical Effects in Materials, Composites, and Systems -- 1.1 Introduction -- 1.1.1 Initial Studies of Photomechanical Effects in Materials -- 1.1.2 Research of Photomechanical Effects in Materials - 1950-1980 -- 1.1.3 Research of Photomechanical Effects in Materials - 1980-2000 -- 1.1.4 Photomechanical Effects Observed in Cross-Linked Liquid-Crystalline Polymers - 2001-Present -- 1.1.5 Photomechanical Effects in Polymeric Materials and Composites Systems since 2000 -- 1.1.6 Classification -- References -- Chapter 2 Photochromism in the Solid State -- 2.1 Molecular Photoswitches in the Solid State -- 2.2 Molecular and Macroscopic Motion of Azobenzene Chromophores -- 2.3 Photomechanical Effects -- 2.3.1 Photomechanical Effects in Amorphous Azo Polymers -- 2.3.2 Actuation in Liquid-Crystalline Polymers -- 2.3.3 Photosalient, Photochromic, and Photomechanical Crystals -- 2.4 Solid-State Photochromic Molecular Machines -- 2.4.1 Nanostructure Functionalization -- 2.4.2 Two-Dimensional Assemblies and Surface Functionalization -- 2.5 Surface Mass Transport and Phase Change Effects -- 2.6 Photochromic Reactions in Framework Architectures -- 2.7 Summary and Outlook -- References -- Chapter 3 Photomechanics: Bend, Curl, Topography, and Topology -- 3.1 The Photomechanics of Liquid-Crystalline Solids -- 3.2 Photomechanics and Its Mechanisms -- 3.2.1 Absorption, Photomechanics, and Bend Actuation -- 3.2.1.1 Photostationary Dye Populations and Mechanical Response -- 3.2.1.2 Dynamical Intensity and Dye Populations -- 3.2.1.3 Polydomain Photosolids -- 3.2.1.4 Photomechanics versus Thermal Mechanics upon Illuminating Photosolids -- 3.3 A Sketch of Macroscopic Mechanical Response in LC Rubbers and Glasses.

3.4 Photo- and Heat-Induced Topographical and Topological Changes -- 3.5 Continuous Director Variation, Part 1 -- 3.6 Mechanico-Geometric Effects, Part 1 -- 3.7 Continuous Director Variation, Part 2 -- 3.8 Continuous Director Variation, Part 3 -- 3.9 Mechanico-Geometric Effects, Part 2 -- 3.10 Director Fields with Discontinuities-Advanced Origami! -- 3.11 Mechanico-Geometric Consequences of Nonisometric Origami -- 3.12 Conclusions -- References -- Chapter 4 Photomechanical Effects in Amorphous and Semicrystalline Polymers -- 4.1 Introduction -- 4.2 Polymeric Materials -- 4.3 The Amorphous Polymer State -- 4.4 The Semicrystalline Polymer State -- 4.5 Absorption Processes -- 4.6 Photomechanical Effects in Amorphous and Semicrystalline Azobenzene-Functionalized Polymers -- 4.6.1 Influence of Crystallinity on Photomechanical Response of Polyimides -- 4.6.2 Backbone Rigidity -- 4.7 Molecular Alignment -- 4.8 Annealing and Aging -- 4.9 Sub-Tg Segmental Mobility -- 4.10 Cross-Link Density -- 4.11 Concluding Remarks -- References -- Chapter 5 Photomechanical Effects in Liquid-Crystalline Polymer Networks and Elastomers -- 5.1 Introduction -- 5.1.1 What Is a Liquid Crystal Polymer, Polymer Network, or Elastomer? -- 5.1.2 How Are Liquid-Crystalline Polymer Networks and Elastomers Prepared? -- 5.1.2.1 Polysiloxane Chemistries -- 5.1.2.2 Free Radical or Cationic Photopolymerization -- 5.2 Optically Responsive Liquid Crystal Polymer Networks -- 5.2.1 Historical Overview -- 5.2.2 Photochromic and Liquid Crystalline -- 5.2.3 Photomechanics -- 5.3 Literature Survey -- 5.3.1 Photomechanical Effects in Polysiloxane Materials and Analogs -- 5.3.2 Photomechanical Effects in Poly(meth)acrylate Materials and Analogs -- 5.4 Outlook and Conclusion -- References -- Chapter 6 Photomechanical Effects in Polymer Nanocomposites -- 6.1 Introduction.

6.2 Photomechanical Actuation in Polymer-Nanotube Composites -- 6.3 Fast Relaxation of Carbon Nanotubes in Polymer Composite Actuators -- 6.4 Highly Oriented Nanotubes for Photomechanical Response and Flexible Energy Conversion -- 6.4.1 Highly Oriented Nanotubes/Nanotube Liquid Crystals -- 6.4.2 Photomechanical Actuation of Oriented Nanotube Composites -- 6.4.3 Relaxation Behavior of Nanotube-Liquid Crystal Elastomers -- 6.5 Photomechanical Actuation Based on 2-D Nanomaterial (Graphene)-Polymer Composites -- 6.6 Applications of Photomechanical Actuation in Nanopositioning -- 6.6.1 Principle of GnP/Elastomer Photothermal Actuation -- 6.6.2 Photomechanical-Actuation-Based Nanopositioning System -- 6.6.3 GNP/PDMS Actuator Fabrication and Characterization -- 6.6.4 Nanopositioner System Integration -- 6.6.5 Kinetics of Photothermal Nanopositioners -- 6.6.6 Useful Displacement versus Maximum Displacement -- 6.6.7 Accuracy and Resolution -- 6.7 Future Outlook -- Acknowledgments -- References -- Chapter 7 Photomechanical Effects in Photochromic Crystals -- 7.1 Introduction -- 7.2 General Principles for Organic Photomechanical Materials -- 7.3 History and Background -- 7.4 Modes of Mechanical Action -- 7.4.1 Partial Reaction and Bimorph Formation -- 7.4.2 Complete Transformation and Crystal Reconfiguration -- 7.5 Photomechanical Molecular Crystal Systems -- 7.5.1 Intramolecular Photochemical Reactions -- 7.5.1.1 Ring-Opening/Closing Reactions -- 7.5.1.2 Photoisomerization -- 7.5.1.3 Photodissociation -- 7.5.2 Intermolecular Photochemical Reactions -- 7.5.2.1 [2 + 2] Photodimerization -- 7.5.2.2 [4 + 4] Photodimerization -- 7.5.3 Nonequilibrium Charge Distribution and Electronic Heating -- 7.6 Future Directions -- 7.6.1 Reaction Dynamics in Molecular Crystals -- 7.6.2 New Materials -- 7.6.3 Interfacing Molecular Crystals with Other Objects -- 7.7 Conclusion.

Acknowledgments -- References -- Chapter 8 Photomechanical Effects in Piezoelectric Ceramics -- 8.1 Introduction -- 8.2 Photovoltaic Effect -- 8.2.1 Principle of the Bulk Photovoltaic Effect -- 8.2.1.1 "Bulk" Photovoltaic Effect -- 8.2.1.2 Experimental Setup -- 8.2.1.3 Current Source Model -- 8.2.1.4 Voltage Source Model -- 8.2.2 Effect of Light Polarization Direction -- 8.2.3 PLZT Composition Research -- 8.2.4 Dopant Research -- 8.3 Photostrictive Effect -- 8.3.1 Figures of Merit -- 8.3.2 Materials Considerations -- 8.3.3 Ceramic Preparation Method Effect -- 8.3.3.1 Processing Method -- 8.3.3.2 Grain Size Effect -- 8.3.3.3 Surface/Geometry Dependence -- 8.4 Photostrictive Device Applications -- 8.4.1 Displacement Amplification Mechanism -- 8.4.2 Photo-Driven Relay -- 8.4.3 Micro-walking Machine -- 8.4.4 "Photophone -- 8.4.5 Micro-propelling Robot -- 8.5 Concluding Remarks -- References -- Chapter 9 Switching Surface Topographies Based on Liquid Crystal Network Coatings -- 9.1 Introduction -- 9.2 Liquid Crystal Networks -- 9.2.1 Photoresponsive Liquid Crystal Networks -- 9.2.2 Photoinduced Surface Deformation -- 9.2.3 Photoinduced Surface Deformation Preset by Patterned Director Orientation -- 9.2.4 On the Mechanism of Surface Deformation -- 9.3 Conclusions -- References -- Chapter 10 Photoinduced Shape Programming -- 10.1 One-Way Shape Memory -- 10.1.1 Photothermal -- 10.1.2 Photochemical -- 10.2 Two-Way Shape Memory -- 10.2.1 Photothermal -- 10.2.2 Photochemical -- 10.3 Summary and Outlook -- References -- Chapter 11 Photomechanical Effects to Enable Devices -- 11.1 Introduction -- 11.2 Analog Photomechanical Actuators -- 11.3 Discrete-State (Digital) Photomechanical Actuators -- 11.3.1 Binary Actuators -- 11.3.2 Latency of Binary Actuators and Repetitive Actuation -- 11.3.3 Multistable Implementations -- 11.3.4 Beyond Bistable, Buckled Rods.

11.4 Photomechanical Mechanisms and Machines -- References -- Chapter 12 Photomechanical Effects in Materials, Composites, and Systems: Outlook and Future Challenges -- 12.1 Introduction -- 12.2 Outlook and Challenges -- 12.2.1 Breadth and Depth -- 12.2.2 Beyond Bending: Mechanics Implementations -- 12.2.3 Harvesting and Harnessing Light -- 12.2.4 Speed is Limited -- 12.2.5 Systems Design and Implementation -- 12.2.6 Applications -- 12.2.6.1 Optical Elements -- 12.2.6.2 Morphing Shapes and Surfaces -- 12.2.6.3 Actuation -- 12.3 Conclusion -- References -- Index -- Supplemental Images -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.