Spline Collocation Methods for Partial Differential Equations : With Applications in R.
Material type:
- text
- computer
- online resource
- 9781119301059
- QA377.S355 2017
Cover -- Title Page -- Copyright -- Dedication -- Contents -- Preface -- About the Companion Website -- Chapter 1 Introduction -- 1.1 Uniform Grids -- 1.2 Variable Grids -- 1.3 Stagewise Differentiation -- Appendix A1 - Online Documentation for splinefun -- Reference -- Chapter 2 One-Dimensional PDEs -- 2.1 Constant Coefficient -- 2.1.1 Dirichlet BCs -- 2.1.1.1 Main Program -- 2.1.1.2 ODE Routine -- 2.1.2 Neumann BCs -- 2.1.2.1 Main Program -- 2.1.2.2 ODE Routine -- 2.1.3 Robin BCs -- 2.1.3.1 Main Program -- 2.1.3.2 ODE Routine -- 2.1.4 Nonlinear BCs -- 2.1.4.1 Main Program -- 2.1.4.2 ODE Routine -- 2.2 Variable Coefficient -- 2.2.1 Main Program -- 2.2.2 ODE Routine -- 2.3 Inhomogeneous, Simultaneous, Nonlinear -- 2.3.1 Main Program -- 2.3.2 ODE routine -- 2.3.3 Subordinate Routines -- 2.4 First Order in Space and Time -- 2.4.1 Main Program -- 2.4.2 ODE Routine -- 2.4.3 Subordinate Routines -- 2.5 Second Order in Time -- 2.5.1 Main Program -- 2.5.2 ODE Routine -- 2.5.3 Subordinate Routine -- 2.6 Fourth Order in Space -- 2.6.1 First Order in Time -- 2.6.1.1 Main Program -- 2.6.1.2 ODE Routine -- 2.6.2 Second Order in Time -- 2.6.2.1 Main Program -- 2.6.2.2 ODE Routine -- References -- Chapter 3 Multidimensional PDEs -- 3.1 2D in Space -- 3.1.1 Main Program -- 3.1.2 ODE Routine -- 3.2 3D in Space -- 3.2.1 Main Program, Case 1 -- 3.2.2 ODE Routine -- 3.2.3 Main Program, Case 2 -- 3.2.4 ODE Routine -- 3.3 Summary and Conclusions -- Chapter 4 Navier-Stokes, Burgers' Equations -- 4.1 PDE Model -- 4.2 Main Program -- 4.3 ODE Routine -- 4.4 Subordinate Routine -- 4.5 Model Output -- 4.6 Summary and Conclusions -- Reference -- Chapter 5 Korteweg-de Vries Equation -- 5.1 PDE Model -- 5.2 Main Program -- 5.3 ODE Routine -- 5.4 Subordinate Routines -- 5.5 Model Output -- 5.6 Summary and Conclusions -- References -- Chapter 6 Maxwell Equations.
6.1 PDE Model -- 6.2 Main Program -- 6.3 ODE Routine -- 6.4 Model Output -- 6.5 Summary and Conclusions -- Appendix A6.1. Derivation of the Analytical Solution -- Reference -- Chapter 7 Poisson-Nernst-Planck Equations -- 7.1 PDE Model -- 7.2 Main Program -- 7.3 ODE Routine -- 7.4 Model Output -- 7.5 Summary and Conclusions -- References -- Chapter 8 Fokker-Planck Equation -- 8.1 PDE Model -- 8.2 Main Program -- 8.3 ODE Routine -- 8.4 Model Output -- 8.5 Summary and Conclusions -- References -- Chapter 9 Fisher-Kolmogorov Equation -- 9.1 PDE Model -- 9.2 Main Program -- 9.3 ODE Routine -- 9.4 Subordinate Routine -- 9.5 Model Output -- 9.6 Summary and Conclusions -- Reference -- Chapter 10 Klein-Gordon Equation -- 10.1 PDE Model, Linear Case -- 10.2 Main Program -- 10.3 ODE Routine -- 10.4 Model Output -- 10.5 PDE Model, Nonlinear Case -- 10.6 Main Program -- 10.7 ODE Routine -- 10.8 Subordinate Routines -- 10.9 Model Output -- 10.10 Summary and Conclusions -- Reference -- Chapter 11 Boussinesq Equation -- 11.1 PDE Model -- 11.2 Main Program -- 11.3 ODE Routine -- 11.4 Subordinate Routines -- 11.5 Model Output -- 11.6 Summary and Conclusions -- References -- Chapter 12 Cahn-Hilliard Equation -- 12.1 PDE Model -- 12.2 Main Program -- 12.3 ODE Routine -- 12.4 Model Output -- 12.5 Summary and Conclusions -- References -- Chapter 13 Camassa-Holm Equation -- 13.1 PDE Model -- 13.2 Main Program -- 13.3 ODE Routine -- 13.4 Model Output -- 13.5 Summary and Conclusions -- 13.6 Appendix A13.1: Second Example of a PDE with a Mixed Partial Derivative -- 13.7 Main Program -- 13.8 ODE Routine -- 13.9 Model Output -- Reference -- Chapter 14 Burgers-Huxley Equation -- 14.1 PDE Model -- 14.2 Main Program -- 14.3 ODE Routine -- 14.4 Subordinate Routine -- 14.5 Model Output -- 14.6 Summary and Conclusions -- References -- Chapter 15 Gierer-Meinhardt Equations.
15.1 PDE Model -- 15.2 Main Program -- 15.3 ODE Routine -- 15.4 Model Output -- 15.5 Summary and Conclusions -- Reference -- Chapter 16 Keller-Segel Equations -- 16.1 PDE Model -- 16.2 Main Program -- 16.3 ODE Routine -- 16.4 Subordinate Routines -- 16.5 Model Output -- 16.6 Summary and Conclusions -- Appendix A16.1. Diffusion Models -- References -- Chapter 17 Fitzhugh-Nagumo Equations -- 17.1 PDE Model -- 17.2 Main Program -- 17.3 ODE Routine -- 17.4 Model Output -- 17.5 Summary and Conclusions -- Reference -- Chapter 18 Euler-Poisson-Darboux Equation -- 18.1 PDE Model -- 18.2 Main Program -- 18.3 ODE Routine -- 18.4 Model Output -- 18.5 Summary and Conclusions -- References -- Chapter 19 Kuramoto-Sivashinsky Equation -- 19.1 PDE Model -- 19.2 Main Program -- 19.3 ODE Routine -- 19.4 Subordinate Routines -- 19.5 Model Output -- 19.6 Summary and Conclusions -- References -- Chapter 20 Einstein-Maxwell Equations -- 20.1 PDE Model -- 20.2 Main Program -- 20.3 ODE Routine -- 20.4 Model Output -- 20.5 Summary and Conclusions -- Reference -- Appendix A Differential Operators in Three Orthogonal Coordinate Systems -- References -- Index -- EULA.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.