ORPP logo
Image from Google Jackets

Applications of Energy Harvesting Technologies in Buildings.

By: Contributor(s): Material type: TextTextPublisher: Norwood : Artech House, 2017Copyright date: ©2017Edition: 1st edDescription: 1 online resource (227 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781630814106
Subject(s): Genre/Form: Additional physical formats: Print version:: Applications of Energy Harvesting Technologies in BuildingsDDC classification:
  • 621.042
LOC classification:
  • TH880
Online resources:
Contents:
Intro -- Applications of Energy Harvesting Technologies in Buildings -- Contents -- 1 Introduction -- 1.1 Background and Motivation -- 1.2 Home and Building Automation -- 1.2.1 Wireless BAS -- 1.2.2 Wireless Home Automation -- 1.3 The Scope of the Book -- References -- 2 Energy Harvesting in the Built Environments -- 2.1 Introduction -- 2.2 Energy-Harvesting Sources in Built Environments -- 2.2.1 Energy Harvesting from Light Sources -- 2.2.2 Energy Harvesting from Thermal Sources -- 2.2.3 Energy Harvesting from Periodic Kinetic Sources -- 2.2.4 Energy Harvesting from Intermittent Kinetic Sources -- 2.2.5 Energy Harvesting from Electromagnetic Waves -- 2.2.6 Energy Harvesting from Inductive Power Transfer -- 2.2.7 Energy Harvesting from Airflow -- 2.2.8 Hybrid Energy Harvesting -- 2.2.9 Summary of Energy Levels in Built Environments -- 2.3 Empirical Energy Measurements in the Built Environments -- 2.3.1 Energy Levels in Residential and Commercial Buildings -- 2.3.2 Comparison of Power Levels Reported in the Literature and Those Obtained Imperially -- 2.4 Energy-Harvesting Sources on the Human Body -- 2.5 Conclusions -- References -- 3 Solar Cell-Powered Sensor Node for Emotion Monitoring Systems in Ambient-Assisted Living Environment -- 3.1 Introduction -- 3.1.1 Overview of Ambient-Assisted Living -- 3.1.2 Energy Harvesting-Powered Wearable EEG Devices -- 3.1.3 Energy Harvesting in the Context of Ambient-Assisted Living -- 3.2 Case Study: Wearable Emotion Sensor Node Powered by Energy Harvesting -- 3.2.1 System Overview -- 3.2.2 EEG Electrodes -- 3.2.3 EEG Amplifier -- 3.2.4 Wireless Microcontroller -- 3.2.5 Energy Harvester Design -- 3.2.6 Integration of Electrodes and Energy Harvester on the Headband -- 3.3 Results and Discussion -- 3.3.1 Energy-Harvester Testing Results -- 3.3.2 Real-Time Emotion Experiment Results -- 3.4 Conclusions.
References -- 4 Thermoelectric Energy Harvesting and Power Management Circuit -- 4.1 Introduction -- 4.2 Thermoelectric Device -- 4.3 Thermoelectric Energy-Harvesting Power Management -- 4.3.1 Power Management System Structure -- 4.3.2 Charge Pump Converter -- 4.3.3 Step-Up DC-DC Switching Regulator -- 4.4 Conclusions -- References -- 5 Inductive Power Transfer and Case Study -- 5.1 Introduction -- 5.2 Inductive Link Theory -- 5.2.1 Principle of Operation of an Inductive WPT System -- 5.2.2 Modeling and Circuit Theory of Inductive Links -- 5.2.3 Coil Construction and Quality Factor -- 5.2.4 Resonant Coupling -- 5.3 Primary-Side Coil Drivers -- 5.3.1 Introduction -- 5.3.2 Definitions -- 5.3.3 Class D Inverters -- 5.3.4 Class E Inverters -- 5.4 Secondary Coil Receivers -- 5.4.1 Introduction -- 5.4.2 Half-Wave and Full-Wave Rectifiers -- 5.4.3 Receiver Impedance Emulation -- 5.5 Safety Issues in IPT -- 5.5.1 Human Exposure Limits -- 5.6 Case Study: Long-Range Inductive Power Transfer -- 5.6.1 Magnetics Design and Measurement -- 5.6.2 Receiver Electronics -- 5.6.3 Transmitter Power Control -- 5.6.4 System Results -- 5.7 Conclusions -- References -- 6 Airflow Energy Harvesting -- 6.1 Introduction -- 6.2 Airflow Harvesting in Buildings -- 6.3 Microturbine Airflow Harvesters -- 6.4 Oscillating Airflow Energy Harvesters -- 6.4.1 Devices Based on Vortex Shedding -- 6.4.2 Devices Based on Galloping and Flutter -- 6.5 Discussion -- References -- 7 Vibration Energy Harvesting -- 7.1 Introduction -- 7.2 Vibration Sources in the Built Environment -- 7.2.1 HVAC -- 7.2.2 Household Appliances -- 7.2.3 Summary -- 7.3 Potential Applications -- 7.4 Vibration Energy Harvesters -- 7.4.1  General Model of Linear Vibration Energy Harvesters -- 7.4.2 Transduction Methods for Vibration Energy Harvesters -- 7.4.3 Broadband Vibration Energy Harvesters.
7.4.4 Scaling Effect of Vibration Energy Harvesters -- 7.5 Design and Evaluation of Vibration Energy Harvesters -- 7.5.1 Design Procedure of Vibration Energy Harvesters -- 7.5.2 Evaluation of Vibration Energy Harvesters -- 7.6 Case Study -- 7.6.1 EnOcean ECO 200 Energy Converter -- 7.6.2 A Credit Card-Sized Wireless Sensor -- 7.6.3 Perpetuum Battery-Free Rail-Monitoring System -- 7.7 Conclusions -- References -- 8 The Future of Energy Harvesting in Buildings -- 8.1 Future Trends in Energy Harvesting -- 8.1.1 Photovoltaic Research -- 8.1.2 RF Energy Harvesting -- 8.1.3 Inductive and Resonant Power Transfer -- 8.1.4 Kinetic Energy Harvesting -- 8.1.5 Thermal Energy Harvesters -- 8.2 Future Related Applications -- References -- About the Authors -- Index.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Applications of Energy Harvesting Technologies in Buildings -- Contents -- 1 Introduction -- 1.1 Background and Motivation -- 1.2 Home and Building Automation -- 1.2.1 Wireless BAS -- 1.2.2 Wireless Home Automation -- 1.3 The Scope of the Book -- References -- 2 Energy Harvesting in the Built Environments -- 2.1 Introduction -- 2.2 Energy-Harvesting Sources in Built Environments -- 2.2.1 Energy Harvesting from Light Sources -- 2.2.2 Energy Harvesting from Thermal Sources -- 2.2.3 Energy Harvesting from Periodic Kinetic Sources -- 2.2.4 Energy Harvesting from Intermittent Kinetic Sources -- 2.2.5 Energy Harvesting from Electromagnetic Waves -- 2.2.6 Energy Harvesting from Inductive Power Transfer -- 2.2.7 Energy Harvesting from Airflow -- 2.2.8 Hybrid Energy Harvesting -- 2.2.9 Summary of Energy Levels in Built Environments -- 2.3 Empirical Energy Measurements in the Built Environments -- 2.3.1 Energy Levels in Residential and Commercial Buildings -- 2.3.2 Comparison of Power Levels Reported in the Literature and Those Obtained Imperially -- 2.4 Energy-Harvesting Sources on the Human Body -- 2.5 Conclusions -- References -- 3 Solar Cell-Powered Sensor Node for Emotion Monitoring Systems in Ambient-Assisted Living Environment -- 3.1 Introduction -- 3.1.1 Overview of Ambient-Assisted Living -- 3.1.2 Energy Harvesting-Powered Wearable EEG Devices -- 3.1.3 Energy Harvesting in the Context of Ambient-Assisted Living -- 3.2 Case Study: Wearable Emotion Sensor Node Powered by Energy Harvesting -- 3.2.1 System Overview -- 3.2.2 EEG Electrodes -- 3.2.3 EEG Amplifier -- 3.2.4 Wireless Microcontroller -- 3.2.5 Energy Harvester Design -- 3.2.6 Integration of Electrodes and Energy Harvester on the Headband -- 3.3 Results and Discussion -- 3.3.1 Energy-Harvester Testing Results -- 3.3.2 Real-Time Emotion Experiment Results -- 3.4 Conclusions.

References -- 4 Thermoelectric Energy Harvesting and Power Management Circuit -- 4.1 Introduction -- 4.2 Thermoelectric Device -- 4.3 Thermoelectric Energy-Harvesting Power Management -- 4.3.1 Power Management System Structure -- 4.3.2 Charge Pump Converter -- 4.3.3 Step-Up DC-DC Switching Regulator -- 4.4 Conclusions -- References -- 5 Inductive Power Transfer and Case Study -- 5.1 Introduction -- 5.2 Inductive Link Theory -- 5.2.1 Principle of Operation of an Inductive WPT System -- 5.2.2 Modeling and Circuit Theory of Inductive Links -- 5.2.3 Coil Construction and Quality Factor -- 5.2.4 Resonant Coupling -- 5.3 Primary-Side Coil Drivers -- 5.3.1 Introduction -- 5.3.2 Definitions -- 5.3.3 Class D Inverters -- 5.3.4 Class E Inverters -- 5.4 Secondary Coil Receivers -- 5.4.1 Introduction -- 5.4.2 Half-Wave and Full-Wave Rectifiers -- 5.4.3 Receiver Impedance Emulation -- 5.5 Safety Issues in IPT -- 5.5.1 Human Exposure Limits -- 5.6 Case Study: Long-Range Inductive Power Transfer -- 5.6.1 Magnetics Design and Measurement -- 5.6.2 Receiver Electronics -- 5.6.3 Transmitter Power Control -- 5.6.4 System Results -- 5.7 Conclusions -- References -- 6 Airflow Energy Harvesting -- 6.1 Introduction -- 6.2 Airflow Harvesting in Buildings -- 6.3 Microturbine Airflow Harvesters -- 6.4 Oscillating Airflow Energy Harvesters -- 6.4.1 Devices Based on Vortex Shedding -- 6.4.2 Devices Based on Galloping and Flutter -- 6.5 Discussion -- References -- 7 Vibration Energy Harvesting -- 7.1 Introduction -- 7.2 Vibration Sources in the Built Environment -- 7.2.1 HVAC -- 7.2.2 Household Appliances -- 7.2.3 Summary -- 7.3 Potential Applications -- 7.4 Vibration Energy Harvesters -- 7.4.1  General Model of Linear Vibration Energy Harvesters -- 7.4.2 Transduction Methods for Vibration Energy Harvesters -- 7.4.3 Broadband Vibration Energy Harvesters.

7.4.4 Scaling Effect of Vibration Energy Harvesters -- 7.5 Design and Evaluation of Vibration Energy Harvesters -- 7.5.1 Design Procedure of Vibration Energy Harvesters -- 7.5.2 Evaluation of Vibration Energy Harvesters -- 7.6 Case Study -- 7.6.1 EnOcean ECO 200 Energy Converter -- 7.6.2 A Credit Card-Sized Wireless Sensor -- 7.6.3 Perpetuum Battery-Free Rail-Monitoring System -- 7.7 Conclusions -- References -- 8 The Future of Energy Harvesting in Buildings -- 8.1 Future Trends in Energy Harvesting -- 8.1.1 Photovoltaic Research -- 8.1.2 RF Energy Harvesting -- 8.1.3 Inductive and Resonant Power Transfer -- 8.1.4 Kinetic Energy Harvesting -- 8.1.5 Thermal Energy Harvesters -- 8.2 Future Related Applications -- References -- About the Authors -- Index.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.