Printable Solar Cells.
Material type:
- text
- computer
- online resource
- 9781119283737
- 621.31244
- TK2960
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I Hybrid Materials and Process Technologies for Printable Solar Cells -- 1 Organic and Inorganic Hybrid Solar Cells -- 1.1 Introduction -- 1.2 Organic/Inorganic Hybrid Solar Cells -- 1.2.1 Introduction to Hybrid Solar Cells -- 1.2.2 Hybrid Solar Cells -- 1.2.2.1 Operational Principles of Bulk Heterojunction Hybrid Solar Cells -- 1.2.2.2 Bulk Heterojunction Hybrid Solar Cells -- 1.2.2.3 Bilayer Heterojunction Hybrid Solar Cells -- 1.2.2.4 Inverted-Type Hybrid Bulk Heterojunction Solar Cells -- 1.2.2.5 Dye-Sensitized Solar Cells -- 1.2.2.6 Perovskite Solar Cells -- 1.3 Conclusion -- References -- 2 Solution Processing and Thin Film Formation of Hybrid Semiconductors for Energy Applications -- 2.1 Physical Chemical Principles of Film Formation by Solution Processes: From Suspensions of Nanoparticles and Solutions to Nucleation, Growth, Coarsening and Microstructural Evolution of Films -- 2.2 Solution-Processing Techniques for Thin Film Deposition -- 2.2.1 Spin Coating -- 2.2.2 Doctor Blade -- 2.2.3 Slot-Die Coating -- 2.2.4 Spray Coating -- 2.3 Properties and Characterization of Thin Films: Transport, Active and Electrode Layers in Thin Film Solar Cells -- 2.4 Understanding the Crystallization Processes in Hybrid Semiconductor Films: Hybrid Perovskite as a Model -- 2.4.1 Thermal Transitions Revealed by DSC -- 2.4.2 Heat Transfer Processes in a Meso-Superstructured Perovskite Solar Cell -- 2.4.3 Effect of the Annealing Process on Morphology and Crystalline Properties of Perovskite Films -- 2.4.4 Role of Precursor Composition in the Crystallinity of Perovskite Films: Understanding the Role of Additives and Moisture in the Final Properties of Perovskite Layers -- References -- 3 Organic-Inorganic Hybrid Solar Cells Based on Quantum Dots -- 3.1 Introduction.
3.2 Polymer/QD Solar Cells -- 3.2.1 Working Principle -- 3.2.2 Device Parameters -- 3.2.2.1 Open-Circuit Voltage (Voc) -- 3.2.2.2 Short-Circuit Current (Jsc) -- 3.2.2.3 Fill Factor (FF) -- 3.2.3 Device Structure -- 3.2.4 Progress of Polymer/QD Solar Cells -- 3.2.4.1 Device Based on Cd Compound -- 3.2.4.2 Device Based on Pb Compound -- 3.2.4.3 Device Based on CuInS2 -- 3.2.5 Strategy for Improved Device Performance -- 3.2.5.1 QDs Surface Treatment -- 3.2.5.2 In-Situ Synthesis of QDs -- 3.2.5.3 Polymer End-Group Functionalization -- 3.3 Outlooks and Conclusions -- Acknowledgment -- References -- 4 Hole Transporting Layers in Printable Solar Cells -- 4.1 Introduction -- 4.2 Hole Transporting Layers in Organic Solar Cells -- 4.2.1 Utility of Hole Transporting Layers -- 4.2.1.1 Energy Level Alignment at the Interfaces and Effect on the Open-Circuit Voltage -- 4.2.1.2 Definition of Device Polarity, Charge Transport and Use as Blocking Layer -- 4.2.1.3 Optical Spacer -- 4.2.1.4 Modulation of the Active Layer Morphology and Use as Protective Layer -- 4.2.2 Overview of Materials Used as Hole Transporting Layers -- 4.2.2.1 Polymers -- 4.2.2.2 Small Molecules -- 4.2.2.3 Metals -- 4.2.2.4 Metal Oxides -- 4.2.2.5 Metal Salts -- 4.2.2.6 Carbon Nanotubes -- 4.2.2.7 Graphene-Based Materials -- 4.2.2.8 Self-Assembled Monolayers -- 4.3 Hole Transporting Layers in Dye-Sensitized Solar Cells -- 4.3.1 Overview of Materials Used as Hole Transporting Layers -- 4.3.1.1 Small Molecules -- 4.3.1.2 Polymers -- 4.4 Hole Transporting Layers in Perovskite Solar Cells -- 4.4.1 Overview of Materials Used as Hole Transporting Layers -- 4.4.1.1 Small Molecules -- 4.4.1.2 Polymers -- 4.4.1.3 Metal Oxides -- 4.4.1.4 Metal Salts -- 4.4.1.5 Carbon Nanotubes -- 4.4.1.6 Graphene-Based Materials -- 4.5 Concluding Remarks -- References -- 5 Printable Solar Cells -- 5.1 Introduction.
5.2 Printable Solar Cells Working Principles -- 5.2.1 CIGS Solar Cells -- 5.2.2 Perovskite Solar Cells -- 5.2.3 Organic Solar Cells -- 5.2.4 Printable Charge-Carrier Selective Layers -- 5.3 Solution-Based Deposition of Thin Film Layers -- 5.3.1 Coating Techniques -- 5.3.1.1 Casting -- 5.3.1.2 Spin Coating -- 5.3.1.3 Blade Coating -- 5.3.1.4 Slot-Die Coating -- 5.3.2 Printing Techniques -- 5.3.2.1 Screen Printing -- 5.3.2.2 Gravure Printing -- 5.3.2.3 Flexographic Printing -- 5.3.2.4 Inkjet Printing -- 5.4 Characterization Techniques -- 5.4.1 Characterization of Thin Layers -- 5.4.2 Electrical Characterization of Solar Cells -- 5.5 Conclusion -- References -- Part II Organic Materials and Process Technologies for Printable Solar Cells -- 6 Spray-Coated Organic Solar Cells -- 6.1 Introduction -- 6.2 Introduction of Spray-Coating Method -- 6.2.1 History of Spray Coating -- 6.2.2 Spray-Coating Equipment -- 6.2.2.1 Airbrush Spray Deposition -- 6.2.2.2 Ultrasonic Spray Deposition -- 6.2.2.3 Electrospray Deposition -- 6.2.3 Spray-Coating Treatment -- 6.2.3.1 Thermal Annealing -- 6.2.3.2 Solvent Treatments -- 6.3 Materials for Spray Coating -- 6.3.1 Organic Materials -- 6.3.2 Metal Oxide and Nanoparticles -- 6.3.3 Perovskite -- 6.4 Application of Spray Coating -- 6.5 Conclusions -- Acknowledgment -- References -- 7 Interface Engineering: A Key Aspect for the Potential Commercialization of Printable Organic Photovoltaic Cells -- 7.1 Introduction -- 7.2 SD-PSCs Based on P3HT:PCBM Active Layers -- 7.2.1 Increase in Donor-Acceptor Interface through Nanostructuration of SD-PSCs -- 7.2.2 Generation of Vertical Concentration Gradient by Addition of Regiorandom P3HT in SD-PSCs -- 7.2.3 Generation of Vertical Concentration Gradient and Molecular Orientation by Rubbing P3HT in SD-PSCs.
7.3 High Performance BHJ-PSCs with Favorable Molecular Orientation Resulting from Active Layer/Substrate Interactions -- 7.4 Strongly Bond Metal Leaves as Laminated Top Electrodes for Low-Cost PSC Fabrication -- 7.5 Conclusions -- References -- 8 Structural, Optical, Electrical and Electronic Properties of PEDOT: PSS Thin Films and Their Application in Solar Cells -- 8.1 Introduction -- 8.2 Chemical Structure of PEDOT:PSS -- 8.3 Optical and Electrical Characteristics of PEDOT:PSS -- 8.4 Electronic Characteristics of PEDOT:PSS -- 8.5 Highly Conductive PEDOT:PSS Thin Films -- 8.6 Hole-Transporting Materials: PEDOT:PSS Thin Films -- 8.6.1 Effect of PEDOT/PSS Ratio -- 8.6.2 Effect of Spin Rate -- 8.6.3 Effect of Thermal Annealing Temperature -- 8.6.4 Effects of Viscosity of PEDOT:PSS Solutions -- 8.7 Directions for Future Development -- 8.8 Conclusion -- Reference -- Part III Perovskites and Process Technologies for Printable Solar Cells -- 9 Organometal Trihalide Perovskite Absorbers: Optoelectronic Properties and Applications for Solar Cells -- 9.1 Introduction -- 9.2 Optical Properties of Organic-Inorganic Perovskite Materials -- 9.3 Charge Transport Properties -- 9.4 Electron Transporting Materials (ETM) -- 9.5 Hole-Transporting Materials (HTM) -- 9.6 Perovskite Solar Cells Architectures -- 9.7 Perovskite Deposition Methods -- 9.8 Photoexcited States -- 9.9 Hysteresis -- 9.10 Stability in Humid Environment -- 9.11 Stability Under UV Light Exposure -- 9.12 Stability at High Temperatures -- 9.13 Additives -- 9.14 Conclusions and Outlook -- Acknowledgment -- References -- 10 Organic-Inorganic Hybrid Perovskite Solar Cells with Scalable and Roll-to-Roll Compatible Printing/Coating Processes -- 10.1 Introduction -- 10.2 Optoelectronic Properties -- 10.3 History -- 10.4 Device Configurations -- 10.5 Functional Materials.
10.5.1 The Organic-Inorganic Halide Perovskites -- 10.5.2 Electron-Selective Layer -- 10.5.3 Hole-Selective Layer -- 10.5.4 Transparent Electrode -- 10.5.5 Counter Electrode -- 10.6 Spin Coating -- 10.7 Roll-to-Roll Processing -- 10.8 Substrate Limitation -- 10.9 Printing and Coating Methods -- 10.9.1 Coating Methods -- 10.9.1.1 Slot-Die Coating -- 10.9.1.2 Spray Coating -- 10.9.1.3 Doctor Blade Coating -- 10.9.1.4 Knife Coating -- 10.9.1.5 Reverse Gravure Coating -- 10.9.2 Printing Methods -- 10.9.2.1 Gravure Printing -- 10.9.2.2 Flexographic Printing -- 10.9.2.3 Screen Printing -- 10.9.2.4 Inkjet Printing -- 10.10 Future Outlook -- References -- 11 Inkjet Printable Processes for Dye-Sensitized and Perovskite Solar Cells and Modules Based on Advanced Nanocomposite Materials -- 11.1 Introduction -- 11.1.1 Dye-Sensitized Solar Cells -- 11.1.2 Perovskite Solar Cells -- 11.2 Inkjet Printing Process -- 11.2.1 Inkjet Printing in DSSC Technology -- 11.2.1.1 Inkjet Printing of Transition Metal Oxides -- 11.2.1.2 Inkjet Printing of Dyes on Semiconducting Oxides -- 11.2.1.3 Inkjet Printing of Ionic Liquid-Based Electrolytes -- 11.2.2 Inkjet Printing in Perovskite Solar Cell Technology -- 11.2.2.1 Inkjet Printing of Perovskite Material -- 11.3 Conclusions -- References -- Part IV Inorganic Materials and Process Technologies for Printable Solar Cells -- 12 Solution-Processed Kesterite Solar Cells -- 12.1 Introduction -- 12.2 Fundamental Aspects of Kesterite Solar Cells -- 12.2.1 Crystal Structure -- 12.2.2 Phase Space and Secondary Phases -- 12.2.3 Optical and Electrical Properties -- 12.2.4 Device Architecture -- 12.3 Keterite Absorber Deposition Strategies -- 12.4 Electrodeposition -- 12.4.1 Stacked Elemental Layer (SEL) Electrodeposition -- 12.4.2 Metallic Alloy Co-electrodeposition -- 12.4.3 Chalcogenide Co-electrodeposition -- 12.5 Direct Solution Coating.
12.5.1 Hydrazine Solution Coating.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.