ORPP logo
Image from Google Jackets

Handbook of Composites from Renewable Materials, Nanocomposites : Advanced Applications.

By: Contributor(s): Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2017Copyright date: ©2017Edition: 1st edDescription: 1 online resource (609 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119224501
Subject(s): Genre/Form: Additional physical formats: Print version:: Handbook of Composites from Renewable Materials, NanocompositesLOC classification:
  • TA418.9.N35.H363 2017
Online resources:
Contents:
Cover -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- 1 Virgin and Recycled Polymers Applied to Advanced Nanocomposites -- 1.1 Introduction -- References -- 2 Biodegradable Polymer-Carbon Nanotube Composites for Water and Wastewater Treatments -- 2.1 Introduction -- 2.2 Synthesis of Biodegradable Polymer-Carbon Nanotube Composites -- 2.2.1 Introduction -- 2.2.2 Starch-Carbon Nanotube Composites -- 2.2.3 Cellulose-Carbon Nanotube Composites -- 2.2.4 Chitosan-Carbon Nanotubes Composites -- 2.3 Applications of Biodegradable Polymer-Carbon Nanotube Composites in Water and Wastewater Treatments -- 2.3.1 Removal of Heavy Metals -- 2.3.2 Removal of Organic Pollutants -- 2.4 Concluding Remarks -- References -- 3 Eco-Friendly Nanocomposites of Chitosan with Natural Extracts, Antimicrobial Agents, and Nanometals -- 3.1 Introduction -- 3.2 Properties and Formation of Chitosan Oligosaccharides -- 3.3 Nanomaterials from Renewable Materials -- 3.3.1 Chitosan Combined with Biomaterials -- 3.3.2 Chitosan Cross-Linked with Natural Extracts -- 3.3.3 Chitosan Co-Polymerized with Synthetic Species -- 3.4 Synthesis Methods for Chitosan-Based Nanocomposites -- 3.4.1 Biological Methods -- 3.4.2 Physical Methods -- 3.4.3 Chemical Methods -- 3.5 Analytical Techniques for the Identification of the Composite Materials -- 3.6 Advanced Applications of Bionanomaterials Based on Chitosan -- 3.6.1 Antimicrobial Applications -- 3.6.2 Biomedical Applications -- 3.6.2.1 Antimicrobial Activity of Wound Dressings -- 3.6.2.2 Drug Delivery -- 3.6.2.3 Tissue Engineering -- 3.6.3 Food-Related Applications -- 3.6.4 Environmental Applications -- 3.6.4.1 Metal Absorption -- 3.6.4.2 Wastewater Treatment -- 3.6.4.3 Agricultural Crops -- 3.6.5 Applications in Heritage Preservation -- 3.7 Conclusions -- Acknowledgments -- References.
4 Controllable Generation of Renewable Nanofibrils from Green Materials and Their Application in Nanocomposites -- 4.1 Introduction -- 4.2 Generation of CNF from Jute Fibers -- 4.2.1 Experimental Section -- 4.2.2 Results and Discussion -- 4.2.3 Short Summary -- 4.3 Controllable Generation of CNF from Jute Fibers -- 4.3.1 Experimental Section -- 4.3.2 Results and Discussion -- 4.3.3 Short Summary -- 4.4 CNF Generation from Other Nonwood Fibers -- 4.4.1 Experiments Details -- 4.4.1 Results and Discussion -- 4.4.3 Summary -- 4.5 Applications in Nanocomposites -- 4.5.1 CNF-Reinforced Polymer Composite -- 4.5.2 Surface Coating as Barrier -- 4.5.3 Assembled into Microfiber and Film -- 4.6 Conclusions and Perspectives -- Acknowledgments -- References -- 5 Nanocellulose and Nanocellulose Composites: Synthesis, Characterization, and Potential Applications -- 5.1 Introduction -- 5.2 Nanocellulose -- 5.3 Nanocellulose Composites -- 5.3.1 Hydrogels Based on Nanocellulose Composites -- 5.3.2 Aerogels Based on Nanocellulose Composites -- 5.3.3 Electrode Materials Based on Nanocellulose Composites -- 5.3.4 Photocatalytic Materials Based on Nanocellulose Composites -- 5.3.5 Antibacterial Materials Based on Nanocellulose Composites -- 5.3.6 Sustained Release Applications Based on Nanocellulose Composites -- 5.3.7 Sensors Based on the Nanocellulose Composites -- 5.3.8 Mechanical Properties -- 5.3.9 Biodegradation Properties -- 5.3.10 Virus Removal -- 5.3.11 Porous Materials -- 5.4 Summary -- Acknowledgments -- References -- 6 Poly(Lactic Acid) Biopolymer Composites and Nanocomposites for Biomedicals and Biopackaging Applications -- 6.1 Introduction -- 6.2 Preparations of PLA -- 6.3 Biocomposite -- 6.4 PLA Biocomposites -- 6.5 Nanocomposites -- 6.6 PLA Nanocomposites -- 6.7 Biomaterials -- 6.8 PLA Biomaterials -- 6.9 Processing Advantages of PLA Biomaterials.
6.10 PLA as Packaging Materials -- 6.11 Biomedical Application of PLA -- 6.12 Medical Implants -- 6.13 Some Clinical Applications of PLA Devices -- 6.13.1 Fibers -- 6.13.2 Meshes -- 6.13.3 Bone Fixation Devices -- 6.13.4 Stress-Shielding Effect -- 6.13.5 Piezoelectric Effect -- 6.13.6 Screws, Pins, and Rods -- 6.13.7 Plates -- 6.13.8 Microspheres, Microcapsules, and Thin Coatings -- 6.14 PLA Packaging Applications -- 6.15 Conclusion -- References -- 7 Impact of Nanotechnology on Water Treatment: Carbon Nanotube and Graphene -- 7.1 Introduction -- 7.2 Threats to Water Treatment -- 7.3 Nanotechnology in Water Treatment -- 7.3.1 Nanomaterials for Water Treatment -- 7.3.2 Nanomaterials and Membrane Filtration -- 7.3.3 Metal Nanostructured Materials -- 7.3.4 Naturally Occurring Materials -- 7.3.5 Carbon Nano Compounds -- 7.3.5.1 Carbon Nanotube Membranes for Water Purification -- 7.3.5.2 Carbon Nanotubes as Catalysts or Co-Catalysts -- 7.3.5.3 Carbon Nanotubes in Photocatalysis -- 7.3.5.4 Carbon Nanotube Filters as Anti-Microbial Materials -- 7.3.5.5 Carbon Nanotube Membranes for Seawater Desalination -- 7.4 Polymer Nanocomposites -- 7.4.1 Graphene-Based Nanomaterials for Water Treatment Membranes -- 7.4.2 Dendrimers -- 7.5 Global Impact of Nanotechnology and Human Health -- 7.6 Conclusions -- Acknowledgments -- References -- 8 Nanomaterials in Energy Generation -- 8.1 Introduction -- 8.1.1 Increasing of Surface Energy and Tension -- 8.1.2 Decrease of Thermal Conductivity -- 8.1.3 The Blue Shift Effect -- 8.2 Applications of Nanotechnology in Medicine and Biology -- 8.3 In Solar Cells -- 8.3.1 Dye-Sensitized Solar Cell -- 8.3.2 Composites from Renewable Materials for Photoanode -- 8.3.3 Composites from Renewable Materials for Electrolyte -- 8.3.4 Composites from Renewable Materials for Organic Solar Cells -- 8.4 Visible-Light Active Photocatalyst.
8.5 Energy Storage -- 8.5.1 Thermal Energy Storage -- 8.5.2 Electrochemical Energy Storage -- 8.6 Biomechanical Energy Harvest and Storage Using Nanogenerator -- 8.7 Nanotechnology on Biogas Production -- 8.7.1 Impact of Metal Oxide Nanoadditives on the Biogas Production -- 8.8 Evaluation of Antibacterial and Antioxidant Activities Using Nanoparticles -- 8.8.1 Antibacterial Activity -- 8.8.2 Antioxidant Activity -- 8.9 Conclusion -- References -- 9 Sustainable Green Nanocomposites from Bacterial Bioplastics for Food-Packaging Applications -- 9.1 Introduction -- 9.2 Polyhydroxyalkanoates: Synthesis, Structure, Properties, and Applications -- 9.2.1 Synthesis -- 9.2.2 Structure -- 9.2.3 Properties -- 9.2.4 Applications -- 9.3 ZnO Nanofillers: Structure, Properties, Synthesis, and Applications -- 9.3.1 Structure -- 9.3.2 Properties -- 9.3.3 Synthesis -- 9.3.4 Applications -- 9.4 Materials and Nanocomposite Processing -- 9.5 Characterization of PHA-Based Nanocomposites -- 9.5.1 Morphology -- 9.5.2 Crystalline Structure -- 9.5.3 FTIR Spectra -- 9.5.4 Crystallization and Melting Behavior -- 9.5.5 Thermal Stability -- 9.5.6 Dynamic Mechanical Properties -- 9.5.7 Static Mechanical Properties -- 9.5.8 Barrier Properties -- 9.5.9 Migration Properties -- 9.5.10 Antibacterial Properties -- 9.6 Conclusions and Outlook -- References -- 10 PLA Nanocomposites: A Promising Material for Future from Renewable Resources -- 10.1 Introduction -- 10.1.1 Nanotechnology -- 10.1.2 Nanocomposites -- 10.2 Biopolymers -- 10.2.1 Structural Formulas of Few Biopolymers -- 10.2.2 Polylactide Polymers -- 10.3 PLA Production -- 10.3.1 PLA Properties -- 10.3.1.1 Rheological Properties -- 10.3.1.2 Mechanical Properties -- 10.4 PLA-Based Nanocomposites -- 10.4.1 Preparation of PLA Nanocomposites -- 10.4.2 Recent Research on PLA Nanocomposites -- 10.4.3 Application of PLA Nanocomposites.
10.5 PLA Nanocomposites -- 10.5.1 PLA/Layered Silicate Nanocomposite -- 10.5.2 PLA/Carbon Nanotubes Nanocomposites -- 10.5.3 PLA/Starch Nanocomposites -- 10.5.4 PLA/Cellulose Nanocomposites -- 10.6 Conclusion -- References -- 11 Biocomposites from Renewable Resources: Preparation and Applications of Chitosan-Clay Nanocomposites -- 11.1 Introduction -- 11.2 Structure, Properties, and Importance of Chitosan and its Nanocomposites -- 11.3 Structure, Properties, and Importance of Montmorillonite -- 11.4 Chitosan-Clay Nanocomposites -- 11.5 Preparation Chitosan-Clay Nanocomposites -- 11.6 Applications of Chitosan-Clay Nanocomposites -- 11.6.1 Food-Packaging Applications -- 11.6.2 Electroanalytical Applications -- 11.6.3 Tissue-Engineering Applications -- 11.6.4 Electrochemical Sensors Applications -- 11.6.5 Wastewater Treatment Applications -- 11.6.6 Drug Delivery Systems -- 11.7 Conclusions -- Acknowledgment -- References -- 12 Nanomaterials: An Advanced and Versatile Nanoadditive for Kraft and Paper Industries -- 12.1 An Overview: Paper Industries -- 12.1.1 Manufacturing: Paper Industries -- 12.1.2 Nanotechnology -- 12.1.3 Nanotechnology: Paper Industries -- 12.2 Nanobleaching Agents: Paper Industries -- 12.2.1 Nano Calcium Silicate Particle -- 12.3 Nanosizing Agents: Paper Industries -- 12.3.1 Nanosilica/Hybrid -- 12.3.2 Nano Titanium Oxide/Hybrid -- 12.4 Nano Wet/Dry Strength Agents: Paper Industries -- 12.4.1 Nanocellulose -- 12.5 Nanopigment: Paper Industries -- 12.5.1 Nanokaolin -- 12.5.2 Nano ZnO/Hybrid -- 12.5.3 Nanocarbonate -- 12.6 Nanoretention Agents: Paper Industries -- 12.6.1 Nanozeolite -- 12.6.2 Nano TiO2 -- 12.7 Nanomineral Filler: Paper Industries -- 12.7.1 Nanoclay -- 12.7.2 Nano Calcium Carbonate -- 12.7.3 Nano TiO2/Hybrid -- 12.8 Nano Superconductor Agents: Paper Industries -- 12.8.1 Nano ZnO.
12.9 Nanodispersion Agents: Paper Industries.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- 1 Virgin and Recycled Polymers Applied to Advanced Nanocomposites -- 1.1 Introduction -- References -- 2 Biodegradable Polymer-Carbon Nanotube Composites for Water and Wastewater Treatments -- 2.1 Introduction -- 2.2 Synthesis of Biodegradable Polymer-Carbon Nanotube Composites -- 2.2.1 Introduction -- 2.2.2 Starch-Carbon Nanotube Composites -- 2.2.3 Cellulose-Carbon Nanotube Composites -- 2.2.4 Chitosan-Carbon Nanotubes Composites -- 2.3 Applications of Biodegradable Polymer-Carbon Nanotube Composites in Water and Wastewater Treatments -- 2.3.1 Removal of Heavy Metals -- 2.3.2 Removal of Organic Pollutants -- 2.4 Concluding Remarks -- References -- 3 Eco-Friendly Nanocomposites of Chitosan with Natural Extracts, Antimicrobial Agents, and Nanometals -- 3.1 Introduction -- 3.2 Properties and Formation of Chitosan Oligosaccharides -- 3.3 Nanomaterials from Renewable Materials -- 3.3.1 Chitosan Combined with Biomaterials -- 3.3.2 Chitosan Cross-Linked with Natural Extracts -- 3.3.3 Chitosan Co-Polymerized with Synthetic Species -- 3.4 Synthesis Methods for Chitosan-Based Nanocomposites -- 3.4.1 Biological Methods -- 3.4.2 Physical Methods -- 3.4.3 Chemical Methods -- 3.5 Analytical Techniques for the Identification of the Composite Materials -- 3.6 Advanced Applications of Bionanomaterials Based on Chitosan -- 3.6.1 Antimicrobial Applications -- 3.6.2 Biomedical Applications -- 3.6.2.1 Antimicrobial Activity of Wound Dressings -- 3.6.2.2 Drug Delivery -- 3.6.2.3 Tissue Engineering -- 3.6.3 Food-Related Applications -- 3.6.4 Environmental Applications -- 3.6.4.1 Metal Absorption -- 3.6.4.2 Wastewater Treatment -- 3.6.4.3 Agricultural Crops -- 3.6.5 Applications in Heritage Preservation -- 3.7 Conclusions -- Acknowledgments -- References.

4 Controllable Generation of Renewable Nanofibrils from Green Materials and Their Application in Nanocomposites -- 4.1 Introduction -- 4.2 Generation of CNF from Jute Fibers -- 4.2.1 Experimental Section -- 4.2.2 Results and Discussion -- 4.2.3 Short Summary -- 4.3 Controllable Generation of CNF from Jute Fibers -- 4.3.1 Experimental Section -- 4.3.2 Results and Discussion -- 4.3.3 Short Summary -- 4.4 CNF Generation from Other Nonwood Fibers -- 4.4.1 Experiments Details -- 4.4.1 Results and Discussion -- 4.4.3 Summary -- 4.5 Applications in Nanocomposites -- 4.5.1 CNF-Reinforced Polymer Composite -- 4.5.2 Surface Coating as Barrier -- 4.5.3 Assembled into Microfiber and Film -- 4.6 Conclusions and Perspectives -- Acknowledgments -- References -- 5 Nanocellulose and Nanocellulose Composites: Synthesis, Characterization, and Potential Applications -- 5.1 Introduction -- 5.2 Nanocellulose -- 5.3 Nanocellulose Composites -- 5.3.1 Hydrogels Based on Nanocellulose Composites -- 5.3.2 Aerogels Based on Nanocellulose Composites -- 5.3.3 Electrode Materials Based on Nanocellulose Composites -- 5.3.4 Photocatalytic Materials Based on Nanocellulose Composites -- 5.3.5 Antibacterial Materials Based on Nanocellulose Composites -- 5.3.6 Sustained Release Applications Based on Nanocellulose Composites -- 5.3.7 Sensors Based on the Nanocellulose Composites -- 5.3.8 Mechanical Properties -- 5.3.9 Biodegradation Properties -- 5.3.10 Virus Removal -- 5.3.11 Porous Materials -- 5.4 Summary -- Acknowledgments -- References -- 6 Poly(Lactic Acid) Biopolymer Composites and Nanocomposites for Biomedicals and Biopackaging Applications -- 6.1 Introduction -- 6.2 Preparations of PLA -- 6.3 Biocomposite -- 6.4 PLA Biocomposites -- 6.5 Nanocomposites -- 6.6 PLA Nanocomposites -- 6.7 Biomaterials -- 6.8 PLA Biomaterials -- 6.9 Processing Advantages of PLA Biomaterials.

6.10 PLA as Packaging Materials -- 6.11 Biomedical Application of PLA -- 6.12 Medical Implants -- 6.13 Some Clinical Applications of PLA Devices -- 6.13.1 Fibers -- 6.13.2 Meshes -- 6.13.3 Bone Fixation Devices -- 6.13.4 Stress-Shielding Effect -- 6.13.5 Piezoelectric Effect -- 6.13.6 Screws, Pins, and Rods -- 6.13.7 Plates -- 6.13.8 Microspheres, Microcapsules, and Thin Coatings -- 6.14 PLA Packaging Applications -- 6.15 Conclusion -- References -- 7 Impact of Nanotechnology on Water Treatment: Carbon Nanotube and Graphene -- 7.1 Introduction -- 7.2 Threats to Water Treatment -- 7.3 Nanotechnology in Water Treatment -- 7.3.1 Nanomaterials for Water Treatment -- 7.3.2 Nanomaterials and Membrane Filtration -- 7.3.3 Metal Nanostructured Materials -- 7.3.4 Naturally Occurring Materials -- 7.3.5 Carbon Nano Compounds -- 7.3.5.1 Carbon Nanotube Membranes for Water Purification -- 7.3.5.2 Carbon Nanotubes as Catalysts or Co-Catalysts -- 7.3.5.3 Carbon Nanotubes in Photocatalysis -- 7.3.5.4 Carbon Nanotube Filters as Anti-Microbial Materials -- 7.3.5.5 Carbon Nanotube Membranes for Seawater Desalination -- 7.4 Polymer Nanocomposites -- 7.4.1 Graphene-Based Nanomaterials for Water Treatment Membranes -- 7.4.2 Dendrimers -- 7.5 Global Impact of Nanotechnology and Human Health -- 7.6 Conclusions -- Acknowledgments -- References -- 8 Nanomaterials in Energy Generation -- 8.1 Introduction -- 8.1.1 Increasing of Surface Energy and Tension -- 8.1.2 Decrease of Thermal Conductivity -- 8.1.3 The Blue Shift Effect -- 8.2 Applications of Nanotechnology in Medicine and Biology -- 8.3 In Solar Cells -- 8.3.1 Dye-Sensitized Solar Cell -- 8.3.2 Composites from Renewable Materials for Photoanode -- 8.3.3 Composites from Renewable Materials for Electrolyte -- 8.3.4 Composites from Renewable Materials for Organic Solar Cells -- 8.4 Visible-Light Active Photocatalyst.

8.5 Energy Storage -- 8.5.1 Thermal Energy Storage -- 8.5.2 Electrochemical Energy Storage -- 8.6 Biomechanical Energy Harvest and Storage Using Nanogenerator -- 8.7 Nanotechnology on Biogas Production -- 8.7.1 Impact of Metal Oxide Nanoadditives on the Biogas Production -- 8.8 Evaluation of Antibacterial and Antioxidant Activities Using Nanoparticles -- 8.8.1 Antibacterial Activity -- 8.8.2 Antioxidant Activity -- 8.9 Conclusion -- References -- 9 Sustainable Green Nanocomposites from Bacterial Bioplastics for Food-Packaging Applications -- 9.1 Introduction -- 9.2 Polyhydroxyalkanoates: Synthesis, Structure, Properties, and Applications -- 9.2.1 Synthesis -- 9.2.2 Structure -- 9.2.3 Properties -- 9.2.4 Applications -- 9.3 ZnO Nanofillers: Structure, Properties, Synthesis, and Applications -- 9.3.1 Structure -- 9.3.2 Properties -- 9.3.3 Synthesis -- 9.3.4 Applications -- 9.4 Materials and Nanocomposite Processing -- 9.5 Characterization of PHA-Based Nanocomposites -- 9.5.1 Morphology -- 9.5.2 Crystalline Structure -- 9.5.3 FTIR Spectra -- 9.5.4 Crystallization and Melting Behavior -- 9.5.5 Thermal Stability -- 9.5.6 Dynamic Mechanical Properties -- 9.5.7 Static Mechanical Properties -- 9.5.8 Barrier Properties -- 9.5.9 Migration Properties -- 9.5.10 Antibacterial Properties -- 9.6 Conclusions and Outlook -- References -- 10 PLA Nanocomposites: A Promising Material for Future from Renewable Resources -- 10.1 Introduction -- 10.1.1 Nanotechnology -- 10.1.2 Nanocomposites -- 10.2 Biopolymers -- 10.2.1 Structural Formulas of Few Biopolymers -- 10.2.2 Polylactide Polymers -- 10.3 PLA Production -- 10.3.1 PLA Properties -- 10.3.1.1 Rheological Properties -- 10.3.1.2 Mechanical Properties -- 10.4 PLA-Based Nanocomposites -- 10.4.1 Preparation of PLA Nanocomposites -- 10.4.2 Recent Research on PLA Nanocomposites -- 10.4.3 Application of PLA Nanocomposites.

10.5 PLA Nanocomposites -- 10.5.1 PLA/Layered Silicate Nanocomposite -- 10.5.2 PLA/Carbon Nanotubes Nanocomposites -- 10.5.3 PLA/Starch Nanocomposites -- 10.5.4 PLA/Cellulose Nanocomposites -- 10.6 Conclusion -- References -- 11 Biocomposites from Renewable Resources: Preparation and Applications of Chitosan-Clay Nanocomposites -- 11.1 Introduction -- 11.2 Structure, Properties, and Importance of Chitosan and its Nanocomposites -- 11.3 Structure, Properties, and Importance of Montmorillonite -- 11.4 Chitosan-Clay Nanocomposites -- 11.5 Preparation Chitosan-Clay Nanocomposites -- 11.6 Applications of Chitosan-Clay Nanocomposites -- 11.6.1 Food-Packaging Applications -- 11.6.2 Electroanalytical Applications -- 11.6.3 Tissue-Engineering Applications -- 11.6.4 Electrochemical Sensors Applications -- 11.6.5 Wastewater Treatment Applications -- 11.6.6 Drug Delivery Systems -- 11.7 Conclusions -- Acknowledgment -- References -- 12 Nanomaterials: An Advanced and Versatile Nanoadditive for Kraft and Paper Industries -- 12.1 An Overview: Paper Industries -- 12.1.1 Manufacturing: Paper Industries -- 12.1.2 Nanotechnology -- 12.1.3 Nanotechnology: Paper Industries -- 12.2 Nanobleaching Agents: Paper Industries -- 12.2.1 Nano Calcium Silicate Particle -- 12.3 Nanosizing Agents: Paper Industries -- 12.3.1 Nanosilica/Hybrid -- 12.3.2 Nano Titanium Oxide/Hybrid -- 12.4 Nano Wet/Dry Strength Agents: Paper Industries -- 12.4.1 Nanocellulose -- 12.5 Nanopigment: Paper Industries -- 12.5.1 Nanokaolin -- 12.5.2 Nano ZnO/Hybrid -- 12.5.3 Nanocarbonate -- 12.6 Nanoretention Agents: Paper Industries -- 12.6.1 Nanozeolite -- 12.6.2 Nano TiO2 -- 12.7 Nanomineral Filler: Paper Industries -- 12.7.1 Nanoclay -- 12.7.2 Nano Calcium Carbonate -- 12.7.3 Nano TiO2/Hybrid -- 12.8 Nano Superconductor Agents: Paper Industries -- 12.8.1 Nano ZnO.

12.9 Nanodispersion Agents: Paper Industries.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.