Micro- and Nanophotonic Technologies.
Material type:
- text
- computer
- online resource
- 9783527699957
- 621.365
- TA1520.M537 2017
Micro- and Nanophotonic Technologies -- Series Editor Preface -- About the Series Editor -- Contents -- Foreword -- Preface -- An Overview of Micro- and Nanophotonic Science and Technology -- 1 Global Scale of the Subject -- 2 A Brief History -- 3 Characteristics -- 3.1 Propagation -- 3.2 Localization -- 3.3 Dispersion -- 4 Prospects and Outlook -- Acknowledgment -- References -- Part One: From Research to Application -- 1: Nanophotonics: From Fundamental Research to Applications -- 1.1 Introduction -- 1.2 Application of Photonic Crystals to Solar Cells -- 1.3 Antireflecting Periodic Structures -- 1.4 Black Silicon -- 1.5 Metamaterials for Wide-Band Filtering -- 1.6 Rough Surfaces with Controlled Statistics -- 1.7 Enhancement of Absorption in Organic Solar Cells with Plasmonic Nano Particles -- 1.8 Quantum Dot Solar Cells -- 1.9 Conclusions -- Acknowledgments -- References -- 2: Photonic Crystal and Plasmonic Microcavities -- 2.1 Introduction -- 2.2 Photonic Crystal Microcavity -- 2.3 Purcell Effect -- 2.3.1 Purcell Factor -- 2.3.2 GaAs Quantum Dots in PC Microcavity -- 2.4 Plasmonic Microcavity -- 2.4.1 Enhanced MD Radiation -- 2.4.2 Enhanced ED Radiation -- 2.4.3 Multimode Cavity -- References -- 3: Unconventional Thermal Emission from Photonic Crystals -- 3.1 Introduction -- 3.2 3D Photonic Crystals -- 3.3 2D Photonic Crystals -- 3.4 1D Photonic Crystals -- 3.5 Summary -- References -- 4: Extremely Small Bending Loss of Organic Polaritonic Fibers -- 4.1 Introduction -- 4.2 Exciton-Polariton Waveguiding in TC Nanofibers -- 4.2.1 Synthesis and Characterization of TC Nanofibers -- 4.2.2 Mechanism of Active Waveguiding in TC Nanofibers -- 4.3 Miniaturized Photonic Circuit Components Constructed from TC Nanofibers -- 4.3.1 Asymmetric Mach-Zehnder Interferometers -- 4.3.2 Microring Resonators -- 4.3.3 Microring Resonator Channel Drop Filters.
4.4 Theoretical Analysis -- 4.4.1 Dispersion Relation -- 4.4.2 Bending Loss -- References -- 5: Plasmon Color Filters and Phase Controllers -- 5.1 Introduction -- 5.2 Optical Filter Based on Surface Plasmon Resonance -- 5.2.1 Light Transmission through Hole and Slit Arrays -- 5.2.1.1 Hole Arrays -- 5.2.1.2 Nanoslit Arrays -- 5.2.2 Fabrication and Measurement -- 5.2.3 Transmission Characteristics -- 5.2.3.1 Hole Arrays -- 5.2.3.2 Nanoslit Arrays -- 5.3 Transmission Phase Control by Stacked Metal-Dielectric Hole Array -- 5.3.1 Verification of Transmission Phase Control by a Uniform SHA -- 5.3.2 Numerical Study of Transition SHA for Inclined Wavefront Formation -- 5.3.3 Experimental Confirmation of Uniform SHA -- 5.3.4 Experimental Confirmation of Transition SHA -- 5.4 Summary -- References -- 6: Entangled Photon Pair Generation in Naturally Symmetric Quantum Dots Grown by Droplet Epitaxy -- 6.1 Introduction -- 6.2 Quantum Dot Photon-pair Source -- 6.3 Natural Growth of Symmetric Quantum Dots -- 6.4 Droplet Epitaxy of GaAs Quantum Dots on AlGaAs(1 1 1)A -- 6.5 Characterization of Entanglement -- 6.6 Violation of Bell's Inequality -- 6.7 Quantum-state Tomography and Other Entanglement Measures -- References -- 7: Single-Photon Generation from Nitrogen Isoelectronic Traps in III-V Semiconductors -- 7.1 Introduction -- 7.2 What is Isoelectronic Trap? -- 7.3 GaP:N Case -- 7.3.1 Macro-PL from Bulk GaP:N -- 7.3.2 & -- micro -- -PL of NN Pairs in δ-Doped GaP:N -- 7.3.3 Single-Photon Emission from δ-Doped GaP:N -- 7.4 GaAs:N Case -- 7.4.1 Overview of Isoelectronic Traps in GaAs -- 7.4.2 NX Centers in δ-Doped GaAs:N -- 7.4.2.1 Growth Conditions and Macro-PL -- 7.4.2.2 & -- micro -- -PL of NX Centers and Single-Photon Emission -- 7.4.3 Energy-Defined N-Related Centers in δ-Doped GaAs:N -- 7.4.3.1 Growth Conditions and Macro-PL -- 7.4.3.2 & -- micro.
PL of NNA and Single-Photon Emission -- 7.5 Summary -- References -- 8: Parity-Time Symmetry in Free Space Optics -- 8.1 Parity-Time Symmetry in Diffractive Optics -- 8.1.1 Spectral, Angular, and Polarization Selectivity -- 8.1.2 Time Multiplexing: Dynamic Gratings and Holograms -- 8.1.3 From Conventional Amplitude/Phase Modulations to Phase/Gain/Loss Modulations -- 8.1.4 Implementation of Parity-Time Symmetry in Optics -- 8.1.4.1 Thick and Thin Gratings -- 8.2 Free Space Diffraction on Active Gratings with Balanced Phase and Gain/Loss Modulations -- 8.2.1 Raman-Nath PT-Symmetric Diffraction -- 8.2.1.1 Raman-Nath Diffraction Regime -- 8.2.1.2 Intermediate and Bragg Diffraction Regimes -- Arbitrary Incidence -- Normal Incidence -- 8.2.1.3 Summary -- 8.3 PT-Symmetric Volume Holograms in Transmission Mode -- 8.3.1 Second-Order Coupled Mode Equations -- 8.3.2 Two-Mode Solution for θ=θB -- 8.3.3 Analytic Solution for Balanced PT-Symmetric Grating for Arbitrary Angle of Incidence -- 8.3.4 Filled Space PT-Symmetric Grating -- 8.3.5 Symmetric Slab Configuration -- 8.3.6 Asymmetric Slab Configurations -- 8.3.6.1 Light Incident from the Substrate Side: ε3 = 1 -- 8.3.6.2 Light Incident from the Air: ε1 = 1 -- 8.3.6.3 Reflective Setup -- 8.3.7 Discussion -- 8.4 Analysis of Unidirectional Nonparaxial Invisibility of Purely Reflective PT-Symmetric Volume Gratings -- 8.4.1 Introduction -- 8.4.2 Analytic Solution for First Three Bragg Orders for a Balanced PT-Symmetric Grating -- 8.4.3 Zeroth Diffractive Orders in Transmission and Reflection -- 8.4.4 Higher Diffractive Orders -- 8.4.4.1 First Diffraction Orders -- 8.4.4.2 Second Diffraction Orders -- 8.4.5 Filled Space PT-Symmetric Gratings -- 8.4.5.1 Filled Space PT-Symmetric Grating Implies ε1 = ε2 = ε3 -- 8.4.6 Reflective PT-Symmetric Gratings with Fresnel Reflections.
8.4.6.1 Symmetric Geometry ε1 = ε3 = 1 -- ε2 = 2.4 -- 8.4.6.2 Asymmetric Slab Configuration -- Grating Located to the Left of Substrate: ε1 = 1 -- ε3 = 2 -- ε2 = 2.4 -- Grating Located to the Right of Substrate: ε1 = 2 -- ε3 = 1 -- ε2 = 2.4 -- 8.5 Summary and Conclusions -- References -- 9: Parity-Time Symmetric Cavities: Intrinsically Single-Mode Lasing -- 9.1 Introduction -- 9.2 Resonant Cavities Based on two PT-Symmetric Diffractive Gratings -- 9.2.1 PT-Symmetric Bragg Grating -- 9.2.2 Concatenation of Two Gratings -- 9.2.3 Temporal Characteristics -- 9.2.4 Summary -- 9.3 Distributed Bragg Reflector Structures Based on PT-Symmetric Coupling with Lowest Possible Lasing Threshold -- 9.3.1 Grating-Assisted Codirectional Coupler with PT Symmetry -- 9.3.2 Threshold Condition in DBR Lasers -- 9.3.3 DBR Lasers with PT-Symmetrical GACC Output -- 9.3.4 Transfer Matrix Description of the DBR Structure with PT-Symmetrical GACC Output -- 9.4 Unique Optical Characteristics of a Fabry-Perot Resonator with Embedded PT-Symmetrical Grating -- 9.4.1 Transfer Matrix for Fabry-Perot Cavity with a Single PT-SBG -- 9.4.2 Absorption and Amplification Modes along with Lasing Characteristics -- 9.4.2.1 Fully Constructive Cavity Interaction -- 9.4.2.2 Partially Constructive Cavity Interaction -- 9.4.2.3 Partially Destructive Cavity Interaction -- 9.4.2.4 Fully Destructive Cavity Interaction -- 9.5 Summary and Conclusions -- References -- 10: Silicon Quantum Dot Composites for Nanophotonics -- 10.1 Introduction -- 10.2 Core-Shell Type Nanocomposites -- 10.3 Polymer Encapsulation -- 10.4 Micelle Encapsulation -- 10.5 Summary -- Acknowledgments -- References -- Part Two: Breakthrough Applications -- 11: Ultrathin Polarizers and Waveplates Made of Metamaterials -- 11.1 Concept and Practice of Subwavelength Optical Devices.
11.1.1 Conceptual Classification of Polarization-Controlling Optical Devices -- 11.1.2 Construction of Optical Devices Using Jones Matrices -- 11.1.3 UV NIL -- 11.2 Ultrathin Polarizers -- 11.3 Ultrathin Waveplates -- 11.3.1 Ultrathin Waveplates Made of Stratified Metal-Dielectric MMs -- 11.3.2 Ultrathin Waveplates of Other Structures -- 11.4 Constructions of Functional Subwavelength Devices -- 11.5 Summary and Prospects -- Acknowledgments -- References -- 12: Nanoimprint Lithography for the Fabrication of Metallic Metasurfaces -- 12.1 Introduction -- 12.2 UV-NIL -- 12.3 Large-Area SP-RGB Color Filter Using UV-NIL -- 12.3.1 Introduction -- 12.3.2 Device Design -- 12.3.3 Device Fabrication and Transmission Characteristics -- 12.4 Emission-Enhanced Plasmonic Metasurfaces Fabricated by NIL -- 12.4.1 Introduction -- 12.4.2 SC-PlC Structure -- 12.4.3 Fabrication and Optical Characterization of SC-PlC -- 12.5 Metasurface Thermal Emitters for Infrared CO2 Detection by UV-NIL -- 12.5.1 Introduction -- 12.5.2 Metasurface Design -- 12.5.3 Device Fabrication and Optical Properties -- 12.6 Summary -- References -- 13: Applications to Optical Communication -- 13.1 Introduction -- 13.2 Optical Fiber and Propagation Impairments -- 13.2.1 Guiding Necessity -- 13.2.2 Multimode and Single-Mode Fibers -- 13.2.3 Rayleigh Diffusion as the Limiting Factor for Optical Fiber Attenuation -- 13.2.4 A Huge Available Bandwidth Resource -- 13.2.5 dispersions as the bit-rate limitations -- 13.2.5.1 Group Velocity Dispersion -- 13.2.5.2 Polarization Mode Dispersion -- 13.2.5.3 bit-rate limitations -- 13.2.5.4 Overcoming the Dispersion Limitations -- 13.2.6 Fiber Nonlinearity -- 13.2.7 New Fiber Materials and Structures -- 13.3 Basics of Functional Devices -- 13.3.1 Optical Sources -- 13.3.1.1 Light Emission in Semiconductor -- 13.3.1.2 Semiconductor Laser Single-Mode Operation.
13.3.1.3 Interband Dynamics as Direct Modulation Limitation.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.