ORPP logo
Image from Google Jackets

Optical and Wireless Convergence for 5G Networks.

By: Contributor(s): Material type: TextTextSeries: IEEE Press SeriesPublisher: Newark : John Wiley & Sons, Incorporated, 2019Copyright date: ©2019Edition: 1st edDescription: 1 online resource (353 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119491613
Subject(s): Genre/Form: Additional physical formats: Print version:: Optical and Wireless Convergence for 5G NetworksDDC classification:
  • 621.38456
LOC classification:
  • TK5103.25 .O685 2020
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Preface -- Acknowledgments -- Introduction -- Chapter 1 Towards a Converged Optical‐Wireless Fronthaul/Backhaul Solution for 5G Networks and Beyond -- 1.1 Introduction -- 1.2 Cellular Network Interface and Solution -- 1.2.1 MBH/MFH Architecture -- 1.2.1.1 Mobile Backhaul (MBH) -- 1.2.1.2 Mobile Fronthaul (MFH) -- 1.2.2 Integrated MBH/MFH Transport Network -- 1.3 5G Enabling Technologies -- 1.3.1 Ultra‐Densification -- 1.3.2 C‐RAN and RAN Virtualization -- 1.3.3 Advanced Radio Coordination -- 1.3.4 Millimeter‐Wave Small Cells -- 1.3.5 Massive MIMO -- 1.3.6 New Multicarrier Modulations for 5G -- 1.4 Fiber‐Wireless Network Convergence -- 1.5 Radio‐Over‐Fiber Transmission Scheme -- 1.5.1 Digital Radio‐Over‐Fiber (D‐RoF) Transmission -- 1.5.2 Analog Radio‐Over‐Fiber (A‐RoF) Transmission -- 1.6 Optical MBH/MFH Transport Network Multiplexing Schemes -- 1.6.1 Wavelength‐Division Multiplexing (WDM) Based Schemes -- 1.6.2 Spatial‐Division Multiplexing (SDM) Based Schemes -- 1.6.2.1 State‐of‐the‐Art of SDM in 5G Infrastructure -- 1.6.2.2 Spatial Division Multiplexing Enabling Tools -- 1.7 Wireless based MFH/MBH -- 1.7.1 FSO Communication Systems -- 1.7.1.1 Log‐Normal Distribution (LN) -- 1.7.1.2 Gamma‐Gamma (ΓΓ) Distribution -- 1.7.2 Hybrid RF/FSO Technology -- 1.7.3 Relay‐Assisted FSO Transmission -- 1.8 Experimental Channel Measurement and Characterization -- 1.9 Results and Discussions -- 1.10 Conclusion -- Acknowledgments -- Bibliography -- Chapter 2 Hybrid Fiber Wireless (HFW) Extension for GPON Toward 5G -- 2.1 Introduction -- 2.2 Passive Optical Network -- 2.2.1 GPON and EPON Standards -- 2.3 Transparent Wireless Extension of Optical Links -- 2.3.1 Transparent Wireless Extension of Optical Links Using Coherent RoF (CRoF).
2.4 Key Enabling Photonic and Electronic Technologies -- 2.4.1 Coherent Photonic Mixer -- 2.4.2 Single Side Band Mach-Zehnder Modulator -- 2.4.3 High Power Amplifier in the E‐band for GPON Extension -- 2.4.4 Integrated Radio Access Units -- 2.5 Field Trial for a 2.5 Gbit s−1 GPON over Wireless -- 2.5.1 RX Throughput and Packet Loss -- 2.5.2 Latency -- 2.5.3 Jitter -- 2.6 Conclusions -- Bibliography -- Chapter 3 Software Defined Networking and Network Function Virtualization for Converged Access‐Metro Networks -- 3.1 Introduction -- 3.2 The 5G Requirements Driving Network Convergence and Virtualization -- 3.3 Access and Metro Convergence -- 3.3.1 Long‐Reach Passive Optical Network -- 3.3.2 New Architectures in Support of 5G Networks, Network Virtualization and Mobile Functional Split -- 3.4 Functional Convergence and Virtualization of the COs -- 3.4.1 Infrastructure -- 3.4.1.1 Disaggregated Hardware -- 3.4.1.2 I/O Abstraction and Data Path -- 3.4.1.3 Data Centre Switching Fabric -- 3.4.1.4 Optimized Infrastructure Projects -- 3.4.2 Management and Control -- 3.4.2.1 Network Control -- 3.4.2.2 Cloud and Virtual Management -- 3.4.2.3 Orchestration, Management and Policy -- 3.4.3 Cross‐Layer Components -- 3.5 Conclusions -- Bibliography -- Chapter 4 Multicore Fibres for 5G Fronthaul Evolution -- 4.1 Why 5G Communications Demand Optical Space‐Division Multiplexing -- 4.2 Multicore Fibre Transmission Review -- 4.2.1 Homogeneous MCFs -- 4.2.2 Heterogeneous MCFs -- 4.3 Radio Access Networks Using Multicore Fibre Links -- 4.3.1 Basic MCF Link Between the Central Office and Base Station -- 4.3.2 MCF Based RoF C‐RAN -- 4.3.3 MCF Based DRoF C‐RAN -- 4.4 Microwave Signal Processing Enabled by Multicore Fibers -- 4.4.1 Signal Processing Over a Heterogeneous MCF Link -- 4.4.2 RF Signal Processing Over a Homogeneous MCF Multi‐Cavity Device -- 4.5 Final Remarks.
Bibliography -- Chapter 5 Enabling VLC and WiFi Network Technologies and Architectures Toward 5G -- 5.1 Introduction -- 5.2 Optical Wireless Systems -- 5.3 Visible Light Communication (VLC) System Fundamentals -- 5.4 VLC Current and Anticipated Future Applications -- 5.4.1 Underwater Wireless Communications -- 5.4.2 Airline and Aviation -- 5.4.3 Hospitals -- 5.4.4 Vehicular Communication Systems -- 5.4.5 Sensitive Areas -- 5.4.6 Manufacturing and Industrial Applications -- 5.4.7 Retail Stores -- 5.4.8 Consumer Electronics -- 5.4.9 Internet of Things -- 5.4.10 Other Application Areas -- 5.5 Hybrid VLC and RF Networks -- 5.6 Challenges and Open‐Ended Issues -- 5.6.1 Flicker and Dimming -- 5.6.2 Data Rate Improvement -- 5.7 Conclusions -- Acknowledgments -- Bibliography -- Chapter 6 5G RAN: Key Radio Technologies and Hardware Implementation Challenges -- 6.1 Introduction -- 6.2 5G NR Enabled Use Cases -- 6.2.1 eMBB and uRLLC -- 6.2.1.1 mMTC -- 6.2.2 Migration to 5G -- 6.3 5G RAN Radio Enabling Technologies -- 6.3.1 Massive MIMO (M‐MIMO) -- 6.3.1.1 M‐MIMO in mmWave -- 6.3.1.2 M‐MIMO in sub 6 GHz -- 6.3.1.3 Distributed MIMO (D‐MIMO) -- 6.3.2 Carrier Aggregation and Licensed Assisted Access to an Unlicensed Spectrum -- 6.3.3 Dual Connectivity -- 6.3.4 Device‐to‐Device (D2D) Communication -- 6.4 Hardware Impairments -- 6.4.1 Hardware Impairments - Transmitters -- 6.4.2 Hardware Impairments - Receivers -- 6.4.3 Hardware Impairments - Transceivers -- 6.5 Technology and Fabrication Challenges -- 6.6 Conclusion -- Bibliography -- Chapter 7 Millimeter Wave Antenna Design for 5G Applications -- 7.1 Introduction -- 7.2 Antenna Design and Procedure -- 7.3 Antenna Optimization and Analysis -- 7.3.1 The Influence of Ground Plane Length (GL) -- 7.3.2 The Effect of Feeding Strip Position (FP) -- 7.3.3 The Influences of the Substrate Type.
7.4 Millimeter Wave Antenna Design with Notched Frequency Band -- 7.5 Millimeter Wave Antenna Design with Loaded Capacitor -- 7.6 Conclusion -- Acknowledgments -- Bibliography -- Chapter 8 Wireless Signal Encapsulation in a Seamless Fiber-Millimeter Wave System -- 8.1 Introduction -- 8.2 Principle of Signal Encapsulation -- 8.2.1 Downlink System -- 8.2.2 Uplink System -- 8.3 Examples of Signal Encapsulation -- 8.3.1 Downlink Transmission -- 8.3.2 Uplink Transmission -- 8.3.3 MmWave Link Distance -- 8.4 Conclusion -- Bibliography -- Chapter 9 5G Optical Sensing Technologies -- 9.1 Introduction -- 9.2 Optical Fibre Communication Network: Intrusion Methods -- 9.3 Physical Protection of Optical Fiber Communication Cables -- 9.3.1 Location‐Based Optical Fibre Sensors -- 9.3.1.1 OTDR Based Sensor -- 9.3.1.2 Mach-Zehnder Interferometry -- 9.3.2 Point‐Based OFSs -- 9.3.2.1 FBGs -- 9.3.3 Zone‐Based OFSs -- 9.3.3.1 Michelson Interferometer -- 9.4 Design Considerations and Performance Characteristics -- 9.4.1 Performance Parameters -- 9.4.2 The Need for Robust Signal Processing Methods -- 9.4.3 System Installation and Technology Suitability -- 9.5 Conclusions -- Bibliography -- Chapter 10 The Tactile Internet over 5G FiWi Architectures -- 10.1 Introduction -- 10.2 The TI: State of the Art and Open Challenges -- 10.3 Related Work -- 10.4 HITL Centric Teleoperation over AI Enhanced FiWi Networks -- 10.5 HART Centric Task Allocation over Multi‐Robot FiWi Based TI Infrastructures -- 10.6 Conclusions -- Bibliography -- Chapter 11 Energy Efficiency in the Cloud Radio Access Network (C‐RAN) for 5G Mobile Networks: Opportunities and Challenges -- 11.1 Introduction -- 11.1.1 Environmental Effects -- 11.1.2 Economic Benefits -- 11.2 Standardized Energy Efficiency Metric (Green Metric) -- 11.2.1 Power Per Subscriber, Traffic and Distance/Area.
11.2.2 Energy Consumption Rating (ECR) Measured in W Gbps−1 -- 11.2.3 Telecommunications Energy Efficiency Ratio (TEER) -- 11.2.4 Telecommunication Equipment Energy Efficiency Rating (TEEER) -- 11.3 Green Design for Energy Crunch Prevention in 5G Networks -- 11.3.1 Hardware Solutions -- 11.3.2 Network Planning and Deployment -- 11.3.2.1 Dense Networks -- 11.3.2.2 Offloading Techniques -- 11.3.3 Resource Allocation -- 11.3.4 Energy Harvesting (EH) and Transfer -- 11.3.4.1 Dedicated EH -- 11.3.4.2 Ambient EH -- 11.4 Fiber Based Energy Efficient Network -- 11.4.1 Zero Power RAU PoF Network -- 11.4.2 Battery Powered RRH PoF Network -- 11.5 System and Power Consumption Model -- 11.5.1 Remote Unit Power Consumption -- 11.5.2 Centralized Unit Power Consumption -- 11.5.3 Fronthaul Power Consumption -- 11.5.4 Massive MIMO Energy Efficiency -- 11.6 Simulation Results and Discussions -- 11.7 Conclusion -- Acknowledgments -- Bibliography -- Chapter 12 Fog Computing Enhanced Fiber‐Wireless Access Networks in the 5G Era -- 12.1 Background and Motivation -- 12.1.1 Next‐Generation PON and Beyond -- 12.1.2 FiWi Broadband Access Networks -- 12.1.3 Role of Fog Computing -- 12.1.4 Computation Offloading -- 12.1.5 Key Issues and Contributions -- 12.2 Fog Computing Enhanced FiWi Networks -- 12.2.1 Network Architecture -- 12.2.2 Protocol Description -- 12.3 Analysis -- 12.3.1 Survivability Analysis -- 12.3.2 End‐to‐End Delay Analysis -- 12.4 Implementation and Validation -- 12.4.1 Experimental Testbed -- 12.4.2 Results -- 12.5 Conclusions and Outlook -- 12.5.1 Conclusions -- 12.5.2 Outlook -- Bibliography -- Chapter 13 Techno‐economic and Business Feasibility Analysis of 5G Transport Networks -- 13.1 Introduction -- 13.2 Mobile Backhaul Technologies -- 13.3 Techno‐economic Framework -- 13.3.1 Architecture Module -- 13.3.2 Topology Module -- 13.3.3 Market Module.
13.3.4 Network Dimensioning Tool.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Preface -- Acknowledgments -- Introduction -- Chapter 1 Towards a Converged Optical‐Wireless Fronthaul/Backhaul Solution for 5G Networks and Beyond -- 1.1 Introduction -- 1.2 Cellular Network Interface and Solution -- 1.2.1 MBH/MFH Architecture -- 1.2.1.1 Mobile Backhaul (MBH) -- 1.2.1.2 Mobile Fronthaul (MFH) -- 1.2.2 Integrated MBH/MFH Transport Network -- 1.3 5G Enabling Technologies -- 1.3.1 Ultra‐Densification -- 1.3.2 C‐RAN and RAN Virtualization -- 1.3.3 Advanced Radio Coordination -- 1.3.4 Millimeter‐Wave Small Cells -- 1.3.5 Massive MIMO -- 1.3.6 New Multicarrier Modulations for 5G -- 1.4 Fiber‐Wireless Network Convergence -- 1.5 Radio‐Over‐Fiber Transmission Scheme -- 1.5.1 Digital Radio‐Over‐Fiber (D‐RoF) Transmission -- 1.5.2 Analog Radio‐Over‐Fiber (A‐RoF) Transmission -- 1.6 Optical MBH/MFH Transport Network Multiplexing Schemes -- 1.6.1 Wavelength‐Division Multiplexing (WDM) Based Schemes -- 1.6.2 Spatial‐Division Multiplexing (SDM) Based Schemes -- 1.6.2.1 State‐of‐the‐Art of SDM in 5G Infrastructure -- 1.6.2.2 Spatial Division Multiplexing Enabling Tools -- 1.7 Wireless based MFH/MBH -- 1.7.1 FSO Communication Systems -- 1.7.1.1 Log‐Normal Distribution (LN) -- 1.7.1.2 Gamma‐Gamma (ΓΓ) Distribution -- 1.7.2 Hybrid RF/FSO Technology -- 1.7.3 Relay‐Assisted FSO Transmission -- 1.8 Experimental Channel Measurement and Characterization -- 1.9 Results and Discussions -- 1.10 Conclusion -- Acknowledgments -- Bibliography -- Chapter 2 Hybrid Fiber Wireless (HFW) Extension for GPON Toward 5G -- 2.1 Introduction -- 2.2 Passive Optical Network -- 2.2.1 GPON and EPON Standards -- 2.3 Transparent Wireless Extension of Optical Links -- 2.3.1 Transparent Wireless Extension of Optical Links Using Coherent RoF (CRoF).

2.4 Key Enabling Photonic and Electronic Technologies -- 2.4.1 Coherent Photonic Mixer -- 2.4.2 Single Side Band Mach-Zehnder Modulator -- 2.4.3 High Power Amplifier in the E‐band for GPON Extension -- 2.4.4 Integrated Radio Access Units -- 2.5 Field Trial for a 2.5 Gbit s−1 GPON over Wireless -- 2.5.1 RX Throughput and Packet Loss -- 2.5.2 Latency -- 2.5.3 Jitter -- 2.6 Conclusions -- Bibliography -- Chapter 3 Software Defined Networking and Network Function Virtualization for Converged Access‐Metro Networks -- 3.1 Introduction -- 3.2 The 5G Requirements Driving Network Convergence and Virtualization -- 3.3 Access and Metro Convergence -- 3.3.1 Long‐Reach Passive Optical Network -- 3.3.2 New Architectures in Support of 5G Networks, Network Virtualization and Mobile Functional Split -- 3.4 Functional Convergence and Virtualization of the COs -- 3.4.1 Infrastructure -- 3.4.1.1 Disaggregated Hardware -- 3.4.1.2 I/O Abstraction and Data Path -- 3.4.1.3 Data Centre Switching Fabric -- 3.4.1.4 Optimized Infrastructure Projects -- 3.4.2 Management and Control -- 3.4.2.1 Network Control -- 3.4.2.2 Cloud and Virtual Management -- 3.4.2.3 Orchestration, Management and Policy -- 3.4.3 Cross‐Layer Components -- 3.5 Conclusions -- Bibliography -- Chapter 4 Multicore Fibres for 5G Fronthaul Evolution -- 4.1 Why 5G Communications Demand Optical Space‐Division Multiplexing -- 4.2 Multicore Fibre Transmission Review -- 4.2.1 Homogeneous MCFs -- 4.2.2 Heterogeneous MCFs -- 4.3 Radio Access Networks Using Multicore Fibre Links -- 4.3.1 Basic MCF Link Between the Central Office and Base Station -- 4.3.2 MCF Based RoF C‐RAN -- 4.3.3 MCF Based DRoF C‐RAN -- 4.4 Microwave Signal Processing Enabled by Multicore Fibers -- 4.4.1 Signal Processing Over a Heterogeneous MCF Link -- 4.4.2 RF Signal Processing Over a Homogeneous MCF Multi‐Cavity Device -- 4.5 Final Remarks.

Bibliography -- Chapter 5 Enabling VLC and WiFi Network Technologies and Architectures Toward 5G -- 5.1 Introduction -- 5.2 Optical Wireless Systems -- 5.3 Visible Light Communication (VLC) System Fundamentals -- 5.4 VLC Current and Anticipated Future Applications -- 5.4.1 Underwater Wireless Communications -- 5.4.2 Airline and Aviation -- 5.4.3 Hospitals -- 5.4.4 Vehicular Communication Systems -- 5.4.5 Sensitive Areas -- 5.4.6 Manufacturing and Industrial Applications -- 5.4.7 Retail Stores -- 5.4.8 Consumer Electronics -- 5.4.9 Internet of Things -- 5.4.10 Other Application Areas -- 5.5 Hybrid VLC and RF Networks -- 5.6 Challenges and Open‐Ended Issues -- 5.6.1 Flicker and Dimming -- 5.6.2 Data Rate Improvement -- 5.7 Conclusions -- Acknowledgments -- Bibliography -- Chapter 6 5G RAN: Key Radio Technologies and Hardware Implementation Challenges -- 6.1 Introduction -- 6.2 5G NR Enabled Use Cases -- 6.2.1 eMBB and uRLLC -- 6.2.1.1 mMTC -- 6.2.2 Migration to 5G -- 6.3 5G RAN Radio Enabling Technologies -- 6.3.1 Massive MIMO (M‐MIMO) -- 6.3.1.1 M‐MIMO in mmWave -- 6.3.1.2 M‐MIMO in sub 6 GHz -- 6.3.1.3 Distributed MIMO (D‐MIMO) -- 6.3.2 Carrier Aggregation and Licensed Assisted Access to an Unlicensed Spectrum -- 6.3.3 Dual Connectivity -- 6.3.4 Device‐to‐Device (D2D) Communication -- 6.4 Hardware Impairments -- 6.4.1 Hardware Impairments - Transmitters -- 6.4.2 Hardware Impairments - Receivers -- 6.4.3 Hardware Impairments - Transceivers -- 6.5 Technology and Fabrication Challenges -- 6.6 Conclusion -- Bibliography -- Chapter 7 Millimeter Wave Antenna Design for 5G Applications -- 7.1 Introduction -- 7.2 Antenna Design and Procedure -- 7.3 Antenna Optimization and Analysis -- 7.3.1 The Influence of Ground Plane Length (GL) -- 7.3.2 The Effect of Feeding Strip Position (FP) -- 7.3.3 The Influences of the Substrate Type.

7.4 Millimeter Wave Antenna Design with Notched Frequency Band -- 7.5 Millimeter Wave Antenna Design with Loaded Capacitor -- 7.6 Conclusion -- Acknowledgments -- Bibliography -- Chapter 8 Wireless Signal Encapsulation in a Seamless Fiber-Millimeter Wave System -- 8.1 Introduction -- 8.2 Principle of Signal Encapsulation -- 8.2.1 Downlink System -- 8.2.2 Uplink System -- 8.3 Examples of Signal Encapsulation -- 8.3.1 Downlink Transmission -- 8.3.2 Uplink Transmission -- 8.3.3 MmWave Link Distance -- 8.4 Conclusion -- Bibliography -- Chapter 9 5G Optical Sensing Technologies -- 9.1 Introduction -- 9.2 Optical Fibre Communication Network: Intrusion Methods -- 9.3 Physical Protection of Optical Fiber Communication Cables -- 9.3.1 Location‐Based Optical Fibre Sensors -- 9.3.1.1 OTDR Based Sensor -- 9.3.1.2 Mach-Zehnder Interferometry -- 9.3.2 Point‐Based OFSs -- 9.3.2.1 FBGs -- 9.3.3 Zone‐Based OFSs -- 9.3.3.1 Michelson Interferometer -- 9.4 Design Considerations and Performance Characteristics -- 9.4.1 Performance Parameters -- 9.4.2 The Need for Robust Signal Processing Methods -- 9.4.3 System Installation and Technology Suitability -- 9.5 Conclusions -- Bibliography -- Chapter 10 The Tactile Internet over 5G FiWi Architectures -- 10.1 Introduction -- 10.2 The TI: State of the Art and Open Challenges -- 10.3 Related Work -- 10.4 HITL Centric Teleoperation over AI Enhanced FiWi Networks -- 10.5 HART Centric Task Allocation over Multi‐Robot FiWi Based TI Infrastructures -- 10.6 Conclusions -- Bibliography -- Chapter 11 Energy Efficiency in the Cloud Radio Access Network (C‐RAN) for 5G Mobile Networks: Opportunities and Challenges -- 11.1 Introduction -- 11.1.1 Environmental Effects -- 11.1.2 Economic Benefits -- 11.2 Standardized Energy Efficiency Metric (Green Metric) -- 11.2.1 Power Per Subscriber, Traffic and Distance/Area.

11.2.2 Energy Consumption Rating (ECR) Measured in W Gbps−1 -- 11.2.3 Telecommunications Energy Efficiency Ratio (TEER) -- 11.2.4 Telecommunication Equipment Energy Efficiency Rating (TEEER) -- 11.3 Green Design for Energy Crunch Prevention in 5G Networks -- 11.3.1 Hardware Solutions -- 11.3.2 Network Planning and Deployment -- 11.3.2.1 Dense Networks -- 11.3.2.2 Offloading Techniques -- 11.3.3 Resource Allocation -- 11.3.4 Energy Harvesting (EH) and Transfer -- 11.3.4.1 Dedicated EH -- 11.3.4.2 Ambient EH -- 11.4 Fiber Based Energy Efficient Network -- 11.4.1 Zero Power RAU PoF Network -- 11.4.2 Battery Powered RRH PoF Network -- 11.5 System and Power Consumption Model -- 11.5.1 Remote Unit Power Consumption -- 11.5.2 Centralized Unit Power Consumption -- 11.5.3 Fronthaul Power Consumption -- 11.5.4 Massive MIMO Energy Efficiency -- 11.6 Simulation Results and Discussions -- 11.7 Conclusion -- Acknowledgments -- Bibliography -- Chapter 12 Fog Computing Enhanced Fiber‐Wireless Access Networks in the 5G Era -- 12.1 Background and Motivation -- 12.1.1 Next‐Generation PON and Beyond -- 12.1.2 FiWi Broadband Access Networks -- 12.1.3 Role of Fog Computing -- 12.1.4 Computation Offloading -- 12.1.5 Key Issues and Contributions -- 12.2 Fog Computing Enhanced FiWi Networks -- 12.2.1 Network Architecture -- 12.2.2 Protocol Description -- 12.3 Analysis -- 12.3.1 Survivability Analysis -- 12.3.2 End‐to‐End Delay Analysis -- 12.4 Implementation and Validation -- 12.4.1 Experimental Testbed -- 12.4.2 Results -- 12.5 Conclusions and Outlook -- 12.5.1 Conclusions -- 12.5.2 Outlook -- Bibliography -- Chapter 13 Techno‐economic and Business Feasibility Analysis of 5G Transport Networks -- 13.1 Introduction -- 13.2 Mobile Backhaul Technologies -- 13.3 Techno‐economic Framework -- 13.3.1 Architecture Module -- 13.3.2 Topology Module -- 13.3.3 Market Module.

13.3.4 Network Dimensioning Tool.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.