Mechanics of Aeronautical Solids, Materials and Structures.
Material type:
- text
- computer
- online resource
- 9781119413400
- TL545.B688 2017
Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Introduction -- I.1. Outlining the problem -- 1. Stress -- 1.1. Notion of stress -- 1.1.1. External forces -- 1.1.2. Internal cohesive forces -- 1.1.3. Normal stress, shear stress -- 1.2. Properties of the stress vector -- 1.2.1. Boundary conditions -- 1.2.2. Torsor of internal forces -- 1.2.3. Reciprocal actions -- 1.2.4. Cauchy reciprocal theorem -- 1.3. Stress matrix -- 1.3.1. Notation -- 1.3.2. Invariants of the stress tensor -- 1.3.3. Relation between the stress matrix and the stress vector -- 1.3.4. Principal stresses and principal directions -- 1.4. Equilibrium equation -- 1.5. Mohr's circle -- 2. Strain -- 2.1. Notion of strain -- 2.1.1. Displacement vector -- 2.1.2. Unit strain -- 2.1.3. Angular distortion -- 2.2. Strain matrix -- 2.2.1. Definition of the strain matrix -- 2.2.2. Principal strains and principal directions -- 2.2.3. Volume expansion -- 2.2.4. Invariants of strain tensor -- 2.2.5. Compatibility condition -- 2.3. Strain measurement: strain gage -- 3. Behavior Law -- 3.1. A few definitions -- 3.2. Tension test -- 3.2.1. Brittle materials -- 3.2.2. Ductile materials -- 3.2.3. Particular cases -- 3.3. Shear test -- 3.3.1. Brittle materials -- 3.3.2. Ductile materials -- 3.4. General rule -- 3.4.1. Linear elasticity -- 3.5. Anisotropic materials: example of a composite -- 3.5.1. Elasticity -- 3.6. Thermoelasticity -- 4. Resolution Methods -- 4.1. Assessment -- 4.2. Displacement method -- 4.3. Stress method -- 4.4. Finite element method -- 5. Work-energy Theorem: Principle of Finite Element Method -- 5.1. Work-energy theorem -- 5.1.1. Hypotheses -- 5.1.2. Strain energy -- 5.1.3. Work of external forces -- 5.1.4. Strain energy -- 5.1.5. Energy minimization: Ritz method -- 5.2. Finite element method -- 5.2.1. General principle of finite element method.
5.2.2. Example of the three-node triangular element -- 5.3. Application: triangle with plate finite element using Catia -- 6. Sizing Criteria of an Aeronautical Structure -- 6.1. Introduction -- 6.2. Experimental determination of a sizing criterion -- 6.3. Normal stress or principal stress criterion: brittle material -- 6.4. Stress or maximum shear energy criterion: ductile material -- 6.4.1. Tresca criterion -- 6.4.2. Von Mises criterion -- 6.4.3. Rupture of a ductile material -- 6.5. Maximum shear criterion with friction: compression of brittle materials -- 6.6. Anisotropic criterion: example of the composite -- 7. Plasticity -- 7.1. Introduction -- 7.2. Plastic instability: necking, true stress and true strain -- 7.3. Plastic behavior law: Ramberg-Osgood law -- 7.4. Example of an elastic-plastic calculation: plate with open hole in tension -- 8. Physics of Aeronautical Structure Materials -- 8.1. Introduction -- 8.2. Aluminum 2024 -- 8.3. Carbon/epoxy composite T300/914 -- 8.4. Polymers -- 9. Exercises -- 9.1. Rosette analysis -- 9.2. Pure shear -- 9.3. Compression of an elastic solid -- 9.4. Gravity dam -- 9.5. Shear modulus -- 9.6. Modulus of a composite -- 9.7. Torsional cylinder -- 9.8. Plastic compression -- 9.9. Bi-material beam tension -- 9.10. Beam thermal expansion -- 9.11. Cube under shear stress -- 9.12. Spherical reservoir under pressure -- 9.13. Plastic bending -- 9.14. Disc under radial tension -- 9.15. Bending beam: resolution by the Ritz method -- 9.16. Stress concentration in open hole -- 9.17. Bending beam -- 10. Solutions to Exercises -- 10.1. Rosette analysis -- 10.2. Pure shear -- 10.3. Compression of an elastic solid -- 10.4. Gravity dam -- 10.5. Shear modulus -- 10.6. Modulus of a composite -- 10.7. Torsional cylinder -- 10.8. Plastic compression -- 10.9. Bi-material beam tension -- 10.10. Beam thermal expansion.
10.11. Cube under shear stress -- 10.12. Spherical reservoir under pressure -- 10.13. Plastic bending -- 10.14. Disc under radial tension -- 10.15. Bending beam: resolution by the Ritz method -- 10.16. Stress concentration in open hole -- 10.17. Bending beam -- Appendix: Analysis Formulas -- A.1. Analysis formulas in Cartesian coordinates -- A.2. Analysis formulas in cylindrical coordinates -- A.3. Analysis formulas in spherical coordinates -- Bibliography -- Index -- Other titles from iSTE in Mechanical Engineering and Solid Mechanics -- EULA.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.