Gas Hydrates 2 : Geoscience Issues and Potential Industrial Applications.
Material type:
- text
- computer
- online resource
- 9781119522416
- 665.7
- TN884 .G374 2018
Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- PART 1: Field study and laboratory experiments of hydrate-bearing sediments -- Introduction to Part 1 -- 1. Water Column Acoustics: Remote Detection of Gas Seeps -- 1.1. Introduction -- 1.2. Principle of the measurement -- 1.2.1. Instrumentations -- 1.2.2. Qualitative and quantitative measurements -- 1.3 Bibliography -- 2. Geophysical Approach -- 2.1. Introduction -- 2.2. Overview -- 2.3. Seismic processing -- 2.3.1. Positioning phase -- 2.3.2. Preprocessing phase -- 2.3.3. Processing phase -- 2.4. Example of gas hydrate exploration: the SYSIF instrument -- 2.5. Bibliography -- 3. Hydrate Seismic Detection -- 3.1. Wave velocities of hydrate-bearing sediments -- 3.1.1. Empirical equations -- 3.1.2. Effective medium theories -- 3.2. Bibliography -- 4. Geomorphology of Gas Hydrate-Bearing Pockmark -- 4.1. Introduction -- 4.2. Generalities about pockmarks -- 4.3. Impact of gas hydrate on seafloor deformation -- 4.4. Morphological evolution of gas hydrate pockmarks -- 4.5. Distinction between gas hydrate-bearing and gas hydratefree pockmarks -- 4.6. Bibliography -- 5. Geotechnics -- 5.1. Introduction -- 5.2. The Penfeld system -- 5.2.1. Piezocone and acoustic soundings in gas hydrate-bearing sediments -- 5.3. Bibliography -- 6. Geochemistry -- 6.1. Introduction -- 6.2. Sampling geological materials from hydrate-bearing sediment -- 6.2.1. The Calypso corer -- 6.2.2. Sampling of sediments, carbonates and pore fluids from the Calypso corer -- 6.3. Analyses -- 6.3.1. Sediment and carbonate -- 6.3.2. Gases -- 6.3.3. Pore water -- 6.4. Bibliography -- 7. Benthic Ecosystem Study -- 7.1. Microbial ecology in hydrate-bearing sediments -- 7.1.1. Study sites containing hydrate-bearing sediments -- 7.1.2. Sampling strategy for microbiology study of hydrate-bearing sediments.
7.1.3. Laboratory analyses -- 7.2. Macrobial ecology studies at cold seeps -- 7.2.1. Mapping biogenic habitats -- 7.2.2. Chemical characterization of biogenic habitats -- 7.2.3. Sampling in biogenic habitats -- 7.2.4. Fauna -- 7.2.5. Symbiosis studies -- 7.3. Bibliography -- 8. Physicochemical Properties of Gas Hydrate-bearing Sediments -- 8.1. Introduction -- 8.2. Gas hydrate formation and dissociation -- 8.3. Fluid transport in gas hydrate-bearing sediments -- 8.4. Thermal and electrical properties of gas hydrate-bearing sediments -- 8.5. Distribution and occurrence of gas hydrates in sediments -- 8.6. Experimental investigation of dynamic processes in gas hydrate-bearing sediments -- 8.7. Bibliography -- 9. Small-scale Laboratory Studies of Key Geotechnical Properties which Cannot be Measured from In Situ Deployed Technologies -- 9.1. Introduction -- 9.2. Influence of gas hydrates on the stiffness and strength properties of sediments -- 9.2.1. Elastic or small-strain stiffness properties -- 9.2.2. Large-strain stiffness and strength properties -- 9.2.3. Geotechnical consequences of gas hydrate destabilization -- 9.3. Bibliography -- PART 2: Modeling of Gas Hydrate-bearing Sediments and Case Studies -- 10. Geomechanical Aspects -- 10.1. Introduction -- 10.2. Geomechanical characteristics -- 10.3. Constitutive models for continuum mechanics frameworks -- 10.3.1. Stress-strain formulation for hydrate-bearing sediments -- 10.3.2. DEM representation -- 10.4. Coupled formulation -- 10.5. Numerical simulations of the Nankai 2013 gas production test -- 10.5.1. The Nankai gas production test overview -- 10.5.2. Modeling procedure -- 10.5.3. History matching of the 2013 Nankai production test -- 10.5.4. Thermo-hydro-mechanical studies during the 2013 Nankai gas production test -- 10.6. Concluding remarks -- 10.7. Bibliography -- 11. Geochemical Aspects.
11.1. Introduction -- 11.2. Basic principles -- 11.2.1. Transport in the aqueous phase by advection and diffusion -- 11.2.2. Numerical scheme for the advection-diffusion problem -- 11.2.3. Transport of methane in aqueous phase in the presence of gas hydrate phase -- 11.2.4. Transport of methane and salt species, with hydrate presence -- 11.3. Model framework -- 11.4. Model validation and sensitivity tests -- 11.5. Model application -- 11.6. Concluding remarks -- 11.7. Acknowledgments -- 11.8. Bibliography -- PART 3: Geoscience and Industrial Applications -- 12. Biogeochemical Dynamics of the Giant Pockmark Regab -- 12.1. Introduction -- 12.2. Location of the pockmark -- 12.2.1. The pockmark Regab: hydrocarbon emission and morphology -- 12.3. Megafauna distribution on Regab pockmark in relation to fluid chemistry -- 12.3.1. Megafauna distribution on the Regab pockmark -- 12.3.2. Mytilid habitats -- 12.3.3. Bacterial mst habitat -- 12.3.4. Vesicomyid habitats -- 12.4. General conclusion on the megafauna distribution on the Regab pockmark in relation to fluid chemistry -- 12.5. Bibliography -- 13. Roles of Gas Hydrates for CO2 Geological Storage Purposes -- 13.1. Introduction -- 13.2. Hydrate trapping of CO2 in subsurfaces (onshore, offshore and deep offshore cases) -- 13.2.1. Case of migration of CO2 within the overburden -- 13.2.2. Case of natural gas hydrates exploitation using CO2 injection -- 13.2.3. Role of mixed gas hydrates in the "deep offshore" CO2 storage option -- 13.3. CO2 deep offshore storage capacity in the French and Spanish EEZs -- 13.4. Summary and prospects -- 13.5. Bibliography -- 14. Hydrate-Based Removal of CO2 from CH4 + CO2 Gas Streams -- 14.1. Introduction -- 14.2. Laboratory experiments of gas capture and separation by means of gas hydrates -- 14.2.1. Batch experiments -- 14.2.2. Semibatch experiments.
14.2.3. Continuous separation experiments -- 14.3. Metrics of CO2 separation -- 14.4. Results from experiments of CO2 removal from CO2/CH4 gas mixtures -- 14.4.1. Pure water and water with surfactant additives -- 14.4.2. THF and other sII hydrate-forming additives -- 14.4.3. TBAB, TBPB and other semiclathrate-forming additives -- 14.5. Routes to enhance the removal of CO2 from CO2/CH4 gas mixtures -- 14.6. Concluding remarks -- 14.7. Bibliography -- 15. Use of Hydrates for Cold Storage and Distribution in Refrigeration and Air-Conditioning Applications -- 15.1. Introduction -- 15.2. Hydrate systems for cool storage and distribution -- 15.2.1. Refrigerant gas hydrate applied to cool storage -- 15.2.2. CO2 hydrates applied to cool storage and distribution -- 15.2.3. Quaternary salt hydrates for cool storage and distribution -- 15.2.4. Other hydrates applied to cool storage and distribution -- 15.3. Criteria for use of hydrates in refrigeration -- 15.3.1. Thermodynamic criterion -- 15.3.2. Flow criterion -- 15.3.3. Thermal criterion -- 15.3.4. Kinetic criterion -- 15.3.5. Energy criterion -- 15.4. Hydrate applications in refrigeration and air conditioning -- 15.4.1. Slurry generation methods -- 15.4.2. Examples of hydrate-based refrigeration systems -- 15.5. Conclusion -- 15.6. Bibliography -- List of Authors -- Index -- Other titles from iSTE in Energy -- EULA.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.