ORPP logo
Image from Google Jackets

Compressible Flow Propulsion and Digital Approaches in Fluid Mechanics.

By: Contributor(s): Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2017Copyright date: ©2017Edition: 1st edDescription: 1 online resource (293 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119368779
Subject(s): Genre/Form: Additional physical formats: Print version:: Compressible Flow Propulsion and Digital Approaches in Fluid MechanicsDDC classification:
  • 532
LOC classification:
  • TA357.C667 2017
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- Preface -- 1. The Flow of Viscous Fluids. Flow in the Vicinity of a Wall: Boundary Layers and Films -- 1.1. Introduction -- 1.2. Characteristics and classification of boundary layers -- 1.2.1. Boundary layers - various approaches -- 1.3. The outer boundary layers: an analytical approach -- 1.3.1. The laminar boundary layer developed by a flat plate in a uniform flow -- 1.3.2. The turbulent boundary layer -- 1.4. Examples of analytical approach: outer flows -- 1.5. Examples of analytical approach: inner flows -- 1.6. Outer boundary layers: integral methods -- 1.6.1. Principle of the integral method -- 1.6.2. Applications of integral methods -- 1.7. Channels and films -- 2. One-dimensional Compressible Flows: Fully Reversible Flows -- 2.1. Introduction -- 2.2. One-dimensional adiabatic and reversible flows -- 2.2.1. Hypotheses adopted -- 2.2.2. Writing the laws -- 2.2.3. Other useful relations -- 2.2.4. Fundamental relations -- 2.2.5. Calculation of flow rate in a piping system -- 2.2.6. De Laval nozzle -- 2.3. Applications. Reversible adiabatic flows -- 3. One-dimensional Compressible Flows: Irreversible Flows -- 3.1. Introduction -- 3.2. Irreversible flow: straight shock wave -- 3.2.1. Establishing the fundamental relations -- 3.2.2. Applications -- 3.3. Partially irreversible flows: shock wave in a nozzle -- 3.3.1. Change of the generating state by the shock wave -- 3.3.2. Applications -- 3.4. Conclusion -- 4. Modeling and Numerical Simulations -- 4.1. Introduction -- 4.2. Methodology description and simulation approach -- 4.3. Modeling and simulation of coupled systems -- 4.3.1. Mathematical formulation. Behavior equations -- 4.3.2. Fluid-structure coupling conditions -- 4.4. Variational formulation -- 4.5. Finite element approximation -- 4.5.1. Approximation of physical unknowns.
4.5.2. Integration of variational forms -- 4.6. The vibro-acoustic problem -- 4.7. The hydro-elastic problem -- 4.8. Applications -- 4.9. Conclusion -- 5. Numerical Simulation of a Vertical-axis Wind Turbine -- 5.1. Introduction -- 5.2. Construction of the rotor geometry and definition of the computational domain -- 5.2.1. Mesh -- 5.2.2. Discretization scheme -- 5.2.3. System resolution and convergence -- 5.3. Analysis of the results -- 5.3.1. Validation of the CFD model -- 5.3.2. Influence of the characteristic parameters -- 5.4. Conclusion -- Appendix: General Equations of Fluid Mechanics -- A.1. Review -- A.1.1. Elements of kinematics -- A.2. Writing the laws -- A.2.1. Law no. 1: the law of continuity -- A.2.2. Law no. 2: the fundamental law of dynamics -- A.3. The equations: expanded form and simplifications -- A.3.1. The complete equations of fluid mechanics, also called "local equations", can be written in Cartesian coordinates -- A.3.2. Application of simplifying hypotheses -- A.4. Table of adiabatic flows -- A.5. Straight shock table -- Bibliography -- Index -- Other titles from iSTE in Mechanical Engineering and Solid Mechanics -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- Preface -- 1. The Flow of Viscous Fluids. Flow in the Vicinity of a Wall: Boundary Layers and Films -- 1.1. Introduction -- 1.2. Characteristics and classification of boundary layers -- 1.2.1. Boundary layers - various approaches -- 1.3. The outer boundary layers: an analytical approach -- 1.3.1. The laminar boundary layer developed by a flat plate in a uniform flow -- 1.3.2. The turbulent boundary layer -- 1.4. Examples of analytical approach: outer flows -- 1.5. Examples of analytical approach: inner flows -- 1.6. Outer boundary layers: integral methods -- 1.6.1. Principle of the integral method -- 1.6.2. Applications of integral methods -- 1.7. Channels and films -- 2. One-dimensional Compressible Flows: Fully Reversible Flows -- 2.1. Introduction -- 2.2. One-dimensional adiabatic and reversible flows -- 2.2.1. Hypotheses adopted -- 2.2.2. Writing the laws -- 2.2.3. Other useful relations -- 2.2.4. Fundamental relations -- 2.2.5. Calculation of flow rate in a piping system -- 2.2.6. De Laval nozzle -- 2.3. Applications. Reversible adiabatic flows -- 3. One-dimensional Compressible Flows: Irreversible Flows -- 3.1. Introduction -- 3.2. Irreversible flow: straight shock wave -- 3.2.1. Establishing the fundamental relations -- 3.2.2. Applications -- 3.3. Partially irreversible flows: shock wave in a nozzle -- 3.3.1. Change of the generating state by the shock wave -- 3.3.2. Applications -- 3.4. Conclusion -- 4. Modeling and Numerical Simulations -- 4.1. Introduction -- 4.2. Methodology description and simulation approach -- 4.3. Modeling and simulation of coupled systems -- 4.3.1. Mathematical formulation. Behavior equations -- 4.3.2. Fluid-structure coupling conditions -- 4.4. Variational formulation -- 4.5. Finite element approximation -- 4.5.1. Approximation of physical unknowns.

4.5.2. Integration of variational forms -- 4.6. The vibro-acoustic problem -- 4.7. The hydro-elastic problem -- 4.8. Applications -- 4.9. Conclusion -- 5. Numerical Simulation of a Vertical-axis Wind Turbine -- 5.1. Introduction -- 5.2. Construction of the rotor geometry and definition of the computational domain -- 5.2.1. Mesh -- 5.2.2. Discretization scheme -- 5.2.3. System resolution and convergence -- 5.3. Analysis of the results -- 5.3.1. Validation of the CFD model -- 5.3.2. Influence of the characteristic parameters -- 5.4. Conclusion -- Appendix: General Equations of Fluid Mechanics -- A.1. Review -- A.1.1. Elements of kinematics -- A.2. Writing the laws -- A.2.1. Law no. 1: the law of continuity -- A.2.2. Law no. 2: the fundamental law of dynamics -- A.3. The equations: expanded form and simplifications -- A.3.1. The complete equations of fluid mechanics, also called "local equations", can be written in Cartesian coordinates -- A.3.2. Application of simplifying hypotheses -- A.4. Table of adiabatic flows -- A.5. Straight shock table -- Bibliography -- Index -- Other titles from iSTE in Mechanical Engineering and Solid Mechanics -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.