Theory and Applications of Heat Transfer in Humans, 2 Volume Set.
Material type:
- text
- computer
- online resource
- 9781119127314
- 572.43
- QH505 .T392 2018
Cover -- Title Page -- Copyright -- Volume I Contents -- Volume II Contents -- List of Contributors to Volume I -- List of Contributors to Volume II -- Preface -- Supplementary Material -- Volume I -- Section I Theory: Physics -- Chapter 1 A Generic Thermal Model for Perfused Tissues -- 1.1 Introduction -- 1.2 Derivation of Generic Bioheat Thermal Models (GBHTMs) -- 1.2.1 A Two-Compartment Generic Bioheat Transfer Model -- 1.2.2 Simplifications -- 1.2.3 A Three-Compartment and 'N + 1' Compartment GBHTM -- 1.3 Comparing the Two-Compartment GBHTM with Pennes' BHTM -- 1.4 Comparing the Predictions of the Two-Compartment GBHTM and Pennes' BHTM with Measured in vivo Temperature Changes during MRI -- 1.5 Summary -- Disclaimer -- Nomenclature -- Subscripts -- Greek -- References -- Chapter 2 Alternate Thermal Models to Predict in vivo Temperatures -- 2.1 Introduction -- 2.2 Estimating Core Temperature -- 2.2.1 Thermal Model -- 2.2.2 Example: The Effect of Anesthetics on the Core Temperature Change -- 2.3 Estimating Worst-Case in vivo Temperature Change due to a 'Regional' Source Term -- 2.3.1 Thermal Model -- 2.4 Estimating in vivo Temperature Change due to a 'Local' Source Term -- 2.4.1 Thermal Model -- 2.5 Summary -- Disclaimer -- References -- Chapter 3 Thermal Effects of Blood Vessels -- 3.1 Introduction -- 3.2 Methods -- 3.3 Results -- 3.4 Discussion -- 3.5 Summary -- Disclaimer -- References -- Chapter 4 Generating Blood Vasculature for Bioheat Computations -- 4.1 Introduction -- 4.2 Method -- 4.2.1 Assumptions and Framework of Method -- 4.2.2 Model Inputs: Geometry and Physics of a Region -- 4.2.3 Model Output: Geometry and Physics of a Vasculature -- 4.2.4 Constraints and Criteria -- 4.2.5 Iterative Generation of a Vasculature -- 4.2.6 Using Tree Structures for Computational Efficiency -- 4.3 Examples -- 4.3.1 Geometry and Flow Parameters.
4.3.2 Growing a Vasculature -- 4.3.3 Capillary Bed -- 4.3.4 Obstructions -- 4.3.5 Finger -- 4.4 Summary -- Disclaimer -- References -- Chapter 5 Whole-Body Human Computational Models and the Effect of Clothing -- 5.1 Introduction -- 5.2 The Clothing-Environment Relationship for Firefighting -- 5.2.1 Properties of Protective Garments Worn by Firefighters -- 5.2.2 Metabolic Heat Generation during Firefighting -- 5.2.3 Ambient Conditions and Exposure Time -- 5.2.4 Analysis of Heat Strain while Wearing Protective Clothing -- 5.3 A Human Thermal Model for Analyzing Thermal Stress during Firefighting -- 5.3.1 Physiological Variables -- 5.3.2 Validation of the Model -- 5.3.3 Modeling Ambient Conditions -- 5.3.4 Heat Load Imposed on Individuals by Fire -- 5.4 Results -- 5.4.1 Analysis of Thermal Injury of an Unprotected Individual from a Flash Fire -- 5.4.2 Analysis of the Effect of Heat Stress on Firefighters -- 5.5 Discussion and Conclusion -- Disclaimer -- References -- Chapter 6 Models of the Cardiovascular System -- 6.1 Purposes -- 6.2 History -- 6.3 Similitude and Dimensional Analysis -- 6.3.1 Geometric Similitude -- 6.3.2 Kinematic Similitude -- 6.3.3 Dynamic Similitude -- 6.3.4 Dimensional Analysis -- 6.4 Black Box Modeling -- 6.5 Lumped-Parameter Models -- 6.5.1 RC "Windkessel" Model -- 6.5.2 R-RC Modified Windkessel Model -- 6.5.3 Four-Element R-L-RC Model -- 6.5.4 Least-Squares Matching -- 6.5.5 Akaike Information Criterion -- 6.5.6 Dealing with Measurement Accuracy -- 6.6 Building Physical Systems -- 6.6.1 Creating Resistance, Compliance, and Inertance Elements for Physical Systems -- 6.6.1.1 Resistance -- 6.6.1.2 Compliance -- 6.6.1.3 Inertance -- 6.6.2 Survey of Physical Systems -- 6.6.2.1 Systems for Testing Artificial Hearts and Other Blood Pumps -- 6.6.2.2 Systems for Testing Prosthetic Valves.
6.6.2.3 Systems for Physiologic System Research and Clinical Training -- 6.7 Summary -- Disclaimer -- References -- Chapter 7 Lumped Parameter Modeling of Human Respiratory System -- 7.1 Introduction -- 7.2 Model Construction -- 7.3 Model Selection -- 7.4 Physiological Relevance of the Model Parameters -- 7.4.1 Parameter Identification -- 7.4.2 Estimation of Zm -- 7.5 Optimization for Parameter Estimation -- 7.6 Example: Potential Application in Clinics -- 7.7 Model Validation -- 7.8 Summary -- Disclaimer -- References -- Chapter 8 Inverse Heat Transfer for Biomedical Applications -- 8.1 Types of Heat Transfer Problems -- 8.2 Basic Considerations in Inverse Heat Transfer Problems -- 8.2.1 Physics-Based Mathematical Models -- 8.2.2 Measurements of the Internal State -- 8.2.3 External Source and Thermophysical Characteristics -- 8.3 Inverse Heat Transfer Solution Methods -- 8.3.1 Gradient-Based Methods -- 8.3.1.1 Function Specification -- 8.3.1.2 Regularization -- 8.3.1.3 Gauss-Newton Method -- 8.3.1.4 The Adjoint Method (Coupled with the Conjugate Gradient Method) -- 8.3.2 Evolutionary Algorithms and Other Non-Gradient-Based Methods -- 8.3.2.1 Genetic Algorithms -- 8.3.2.2 Other Non-Gradient-Based Methods -- 8.4 Applications of Inverse Solution Methods to Bioheat Transfer -- 8.4.1 Gradient-Based Methods -- 8.4.1.1 Gauss-Based methods -- 8.4.1.2 The Adjoint Method -- 8.4.2 Non-Gradient Methods -- 8.4.2.1 Evolutionary Algorithms -- 8.4.2.2 Non-Gradient Methods -- 8.4.2.3 Comparison Studies -- 8.5 Summary -- Disclaimer -- References -- Chapter 9 Fundamentals of Propagation of Light in Tissue -- 9.1 Light-Tissue Interaction -- 9.1.1 Reflection and Refraction -- 9.1.2 Absorption -- 9.1.3 Scattering -- 9.2 Light Propagation in Turbid Media -- 9.2.1 Diffusion Theory -- 9.2.2 Monte Carlo Simulation -- 9.2.3 Hybrid Theory -- 9.3 Practical Considerations.
9.3.1 Application to Biomedical Research -- 9.3.2 Safety Considerations -- Acknowledgment -- Disclaimer -- References -- Chapter 10 Ultrasound Propagation in Tissue -- 10.1 Introduction -- 10.2 Ultrasound Physics -- 10.2.1 Linear Ultrasound Modeling -- 10.2.1.1 The Rayleigh-Sommerfeld Integral -- 10.2.1.2 The Paraxial Approximation -- 10.2.1.3 Simple Expressions for Temperature Elevation by a Linear Field -- 10.2.2 Nonlinear Ultrasound Modeling -- 10.2.2.1 A Simple Model -- 10.2.2.2 Heating Due to Shocks -- 10.2.3 Cavitation -- 10.3 Numerical Simulation -- 10.3.1 Resolution -- 10.3.2 Splitting -- 10.3.3 Discretization -- 10.3.3.1 Spatial Discretization -- 10.3.3.2 Boundary Conditions -- 10.3.3.3 Evolution Variable Discretization -- 10.3.4 Software Packages -- Disclaimer -- References -- Chapter 11 Electromagnetic Waves and Fields in the Human Body in MRI -- 11.1 RF Waves at the Air-Body Boundary: Reflection and Refraction -- 11.1.1 Snell's Law of Refraction and Refraction Angles -- 11.1.2 RF Wave Reflection/Transmission Coefficients -- 11.1.3 Application of the Wave Theory to MRI -- 11.1.3.1 Dielectric Pad -- 11.1.3.2 Thin Dielectric Pad -- 11.1.3.3 Dielectric Board -- 11.2 Introduction to Finite-Difference-Time Domain -- 11.3 FDTD Simulation Steps and Setup -- 11.3.1 Cell Size -- 11.3.2 Time Step Size -- 11.3.3 FDTD Boundary and FDTD Space -- 11.3.4 Fast Fourier Transform (FFT) and Frequency Resolution -- 11.4 RF Fields inside the Human Body -- Disclaimer -- References -- Chapter 12 Electromagnetic Distribution in Tissue with Conductive Devices -- 12.1 Introduction -- 12.2 Electromagnetic Wave Propagation in Tissue -- 12.3 Interaction of Electric Fields with Passive Implants and Heating during MRI -- 12.4 Heating of an Implant by Coupling with a Time Varying Magnetic Field.
12.5 Scattering of Electric Fields by Active Implants and RF Heating during MRI -- 12.6 Transmission Line (Wave) Model for a Lead -- 12.6.1 Determination of Transmission Line Parameters from Transfer Function Measurements -- 12.6.2 Results of the Transmission Line Model for an Actual Lead -- 12.6.3 Electric Field Transfer Function for Heating at the Electrodes -- 12.6.4 Header Current Transfer Function -- 12.7 Hybrid Model of Calculation of RF Heating of a Lead -- 12.8 Discussion -- Acknowledgement -- Disclaimer -- References -- Chapter 13 Techniques for Fast Computation -- 13.1 Introduction -- 13.2 Test Case -- 13.2.1 A Simple Bioheat Model -- 13.2.2 Numerical Method and Code Description -- 13.2.3 Model Output -- 13.2.4 Hardware Specifications -- 13.3 Issues, Techniques, and Results -- 13.3.1 X15 Code Performance -- 13.3.2 Vectorization and Data Streams -- 13.3.3 Memory Hierarchy -- 13.3.4 Thread Parallel -- 13.3.5 Distributed Memory Parallel -- 13.4 Summary -- Disclaimer -- References -- Chapter 14 Principles of Temperature Measurement with Temperature Probes in Bioheat Transfer Applications -- 14.1 Temperature Measurement -- 14.2 Thermometers -- 14.2.1 Liquid-in-Glass Thermometer -- 14.2.2 Constant Volume Gas Thermometer -- 14.3 Thermistors -- 14.4 Thermocouples -- 14.5 Radiation Thermometry -- 14.6 Fiber-optic Temperature Sensors -- Disclaimer -- Reference -- Further Reading -- Chapter 15 Non-Invasive Thermometry with Magnetic Resonance Imaging -- 15.1 Introduction -- 15.2 Principles of Magnetic Resonance Imaging -- 15.2.1 Basic Principles -- 15.2.2 Boltzmann Distribution -- 15.2.3 Signal Generation/Radiofrequency Excitation -- 15.2.4 Relaxation Phenomenon -- 15.2.5 Signal Detection -- 15.2.6 Signal Localization -- 15.3 Magnetic Resonance Temperature Imaging -- 15.3.1 Proton Density and Signal Intensity.
15.3.2 Proton Resonance Frequency Shift (PRFS).
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.